On homogenization of space-time dependent and degenerate random flows II

Rémi Rhodes

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 4, page 673-692
  • ISSN: 0246-0203

Abstract

top
We study the long time behavior (homogenization) of a diffusion in random medium with time and space dependent coefficients. The diffusion coefficient may degenerate. In Stochastic Process. Appl. (2007) (to appear), an invariance principle is proved for the critical rescaling of the diffusion. Here, we generalize this approach to diffusions whose space-time scaling differs from the critical one.

How to cite

top

Rhodes, Rémi. "On homogenization of space-time dependent and degenerate random flows II." Annales de l'I.H.P. Probabilités et statistiques 44.4 (2008): 673-692. <http://eudml.org/doc/77987>.

@article{Rhodes2008,
abstract = {We study the long time behavior (homogenization) of a diffusion in random medium with time and space dependent coefficients. The diffusion coefficient may degenerate. In Stochastic Process. Appl. (2007) (to appear), an invariance principle is proved for the critical rescaling of the diffusion. Here, we generalize this approach to diffusions whose space-time scaling differs from the critical one.},
author = {Rhodes, Rémi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {673-692},
publisher = {Gauthier-Villars},
title = {On homogenization of space-time dependent and degenerate random flows II},
url = {http://eudml.org/doc/77987},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Rhodes, Rémi
TI - On homogenization of space-time dependent and degenerate random flows II
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 4
SP - 673
EP - 692
AB - We study the long time behavior (homogenization) of a diffusion in random medium with time and space dependent coefficients. The diffusion coefficient may degenerate. In Stochastic Process. Appl. (2007) (to appear), an invariance principle is proved for the critical rescaling of the diffusion. Here, we generalize this approach to diffusions whose space-time scaling differs from the critical one.
LA - eng
UR - http://eudml.org/doc/77987
ER -

References

top
  1. [1] A. Bensoussan, J. L. Lions and G. Papanicolaou. Asymptotic Methods in Periodic Media. North Holland, 1978. Zbl0404.35001MR503330
  2. [2] M. G. Crandall, H. Ishii and P. L. Lions. User’s guide to viscosity solutions of second order Partial Differential Equations. Bull. Amer. Soc. 27 (1992) 1–67. Zbl0755.35015MR1118699
  3. [3] E. B. Davies. One-parameter Semigroups. Academic Press, 1980. Zbl0457.47030MR591851
  4. [4] Y. Efendiev and A. Pankov. Homogenization of nonlinear random parabolic operators. Adv. Differential Equations 10 (2005) 1235–1260. Zbl1103.35015MR2175335
  5. [5] A. Fannjiang and T. Komorowski. An invariance principle for diffusion in turbulence. Ann. Probab. 27 (1999) 751–781. Zbl0943.60030MR1698963
  6. [6] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin and Hawthorne, New York, 1994. Zbl0838.31001MR1303354
  7. [7] N. V. Krylov. Controlled Diffusion Processes. Springer, New York, 1980. Zbl0459.93002MR601776
  8. [8] C. Landim, S. Olla and H. T. Yau. Convection-diffusion equation with space-time ergodic random flow. Probab. Theory Related Fields 112 (1998) 203–220. Zbl0914.60070MR1653837
  9. [9] A. Lejay. Homogenization of divergence-form operators with lower order terms in random media. Probab. Theory Related Fields 120 (2001) 255–276. Zbl0987.35018MR1841330
  10. [10] T. Komorowski and S. Olla. On homogenization of time-dependent random flows. Probab. Theory Related Fields 121 (2001) 98–116. Zbl0996.60040MR1857110
  11. [11] Z. M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1992. Zbl0826.31001
  12. [12] J. R. Norris. Long-time behaviour of heat flow: Global estimates and exact asymptotics. Arch. Rational Mech. Anal. 140 (1997) 161–195. Zbl0899.35015MR1482931
  13. [13] K. Oelschläger. Homogenization of a diffusion process in a divergence free random field. Ann. Probab. 16 (1988) 1084–1126. Zbl0653.60047MR942757
  14. [14] S. Olla. Homogenization of diffusion processes in Random Fields. Cours de l’école doctorale, Ecole polytechnique, 1994. 
  15. [15] H. Osada. Homogenization of diffusion processes with random stationary coefficients. Probability Theory and Mathematical Statistics (Tbilisi, 1982) 507–517. Lecture Notes in Math. 1021. Springer, Berlin, 1983. Zbl0535.60071MR736016
  16. [16] A. Pankov. G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Publ., 1997. Zbl0883.35001MR1482803
  17. [17] E. Pardoux. BSDE’s, weak convergence and homogenization of semilinear PDE’s in Nonlinear analysis. In Differential Equations and Control 503–549. F. H. Clarke and R. J. Stern (Eds). Kluwer Acad. Publ., Dordrecht, 1999. Zbl0959.60049MR1695013
  18. [18] R. Rhodes. On homogenization of space-time dependent and degenerate random flows. Stochastic Process. Appl. 17 (2007) 1561–1585. Zbl1127.60027MR2353040
  19. [19] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. New York, Springer, 1979. Zbl0426.60069MR532498
  20. [20] N. Svanstedt. Correctors for the homogenization of monotone parabolic operators. J. Nonlinear Math. Phys. 7 (2000) 268–284. Zbl0954.35023MR1777302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.