On homogenization of space-time dependent and degenerate random flows II
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 4, page 673-692
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topRhodes, Rémi. "On homogenization of space-time dependent and degenerate random flows II." Annales de l'I.H.P. Probabilités et statistiques 44.4 (2008): 673-692. <http://eudml.org/doc/77987>.
@article{Rhodes2008,
abstract = {We study the long time behavior (homogenization) of a diffusion in random medium with time and space dependent coefficients. The diffusion coefficient may degenerate. In Stochastic Process. Appl. (2007) (to appear), an invariance principle is proved for the critical rescaling of the diffusion. Here, we generalize this approach to diffusions whose space-time scaling differs from the critical one.},
author = {Rhodes, Rémi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {673-692},
publisher = {Gauthier-Villars},
title = {On homogenization of space-time dependent and degenerate random flows II},
url = {http://eudml.org/doc/77987},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Rhodes, Rémi
TI - On homogenization of space-time dependent and degenerate random flows II
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 4
SP - 673
EP - 692
AB - We study the long time behavior (homogenization) of a diffusion in random medium with time and space dependent coefficients. The diffusion coefficient may degenerate. In Stochastic Process. Appl. (2007) (to appear), an invariance principle is proved for the critical rescaling of the diffusion. Here, we generalize this approach to diffusions whose space-time scaling differs from the critical one.
LA - eng
UR - http://eudml.org/doc/77987
ER -
References
top- [1] A. Bensoussan, J. L. Lions and G. Papanicolaou. Asymptotic Methods in Periodic Media. North Holland, 1978. Zbl0404.35001MR503330
- [2] M. G. Crandall, H. Ishii and P. L. Lions. User’s guide to viscosity solutions of second order Partial Differential Equations. Bull. Amer. Soc. 27 (1992) 1–67. Zbl0755.35015MR1118699
- [3] E. B. Davies. One-parameter Semigroups. Academic Press, 1980. Zbl0457.47030MR591851
- [4] Y. Efendiev and A. Pankov. Homogenization of nonlinear random parabolic operators. Adv. Differential Equations 10 (2005) 1235–1260. Zbl1103.35015MR2175335
- [5] A. Fannjiang and T. Komorowski. An invariance principle for diffusion in turbulence. Ann. Probab. 27 (1999) 751–781. Zbl0943.60030MR1698963
- [6] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin and Hawthorne, New York, 1994. Zbl0838.31001MR1303354
- [7] N. V. Krylov. Controlled Diffusion Processes. Springer, New York, 1980. Zbl0459.93002MR601776
- [8] C. Landim, S. Olla and H. T. Yau. Convection-diffusion equation with space-time ergodic random flow. Probab. Theory Related Fields 112 (1998) 203–220. Zbl0914.60070MR1653837
- [9] A. Lejay. Homogenization of divergence-form operators with lower order terms in random media. Probab. Theory Related Fields 120 (2001) 255–276. Zbl0987.35018MR1841330
- [10] T. Komorowski and S. Olla. On homogenization of time-dependent random flows. Probab. Theory Related Fields 121 (2001) 98–116. Zbl0996.60040MR1857110
- [11] Z. M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1992. Zbl0826.31001
- [12] J. R. Norris. Long-time behaviour of heat flow: Global estimates and exact asymptotics. Arch. Rational Mech. Anal. 140 (1997) 161–195. Zbl0899.35015MR1482931
- [13] K. Oelschläger. Homogenization of a diffusion process in a divergence free random field. Ann. Probab. 16 (1988) 1084–1126. Zbl0653.60047MR942757
- [14] S. Olla. Homogenization of diffusion processes in Random Fields. Cours de l’école doctorale, Ecole polytechnique, 1994.
- [15] H. Osada. Homogenization of diffusion processes with random stationary coefficients. Probability Theory and Mathematical Statistics (Tbilisi, 1982) 507–517. Lecture Notes in Math. 1021. Springer, Berlin, 1983. Zbl0535.60071MR736016
- [16] A. Pankov. G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Publ., 1997. Zbl0883.35001MR1482803
- [17] E. Pardoux. BSDE’s, weak convergence and homogenization of semilinear PDE’s in Nonlinear analysis. In Differential Equations and Control 503–549. F. H. Clarke and R. J. Stern (Eds). Kluwer Acad. Publ., Dordrecht, 1999. Zbl0959.60049MR1695013
- [18] R. Rhodes. On homogenization of space-time dependent and degenerate random flows. Stochastic Process. Appl. 17 (2007) 1561–1585. Zbl1127.60027MR2353040
- [19] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. New York, Springer, 1979. Zbl0426.60069MR532498
- [20] N. Svanstedt. Correctors for the homogenization of monotone parabolic operators. J. Nonlinear Math. Phys. 7 (2000) 268–284. Zbl0954.35023MR1777302
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.