Random permutations and unique fully supported ergodicity for the Euler adic transformation
Sarah Bailey Frick; Karl Petersen
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 5, page 876-885
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topFrick, Sarah Bailey, and Petersen, Karl. "Random permutations and unique fully supported ergodicity for the Euler adic transformation." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 876-885. <http://eudml.org/doc/77995>.
@article{Frick2008,
abstract = {There is only one fully supported ergodic invariant probability measure for the adic transformation on the space of infinite paths in the graph that underlies the eulerian numbers. This result may partially justify a frequent assumption about the equidistribution of random permutations.},
author = {Frick, Sarah Bailey, Petersen, Karl},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random permutations; eulerian numbers; adic transformation; invariant measures; ergodic transformations; Bratteli diagrams; rises and falls; Eulerian numbers},
language = {eng},
number = {5},
pages = {876-885},
publisher = {Gauthier-Villars},
title = {Random permutations and unique fully supported ergodicity for the Euler adic transformation},
url = {http://eudml.org/doc/77995},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Frick, Sarah Bailey
AU - Petersen, Karl
TI - Random permutations and unique fully supported ergodicity for the Euler adic transformation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 876
EP - 885
AB - There is only one fully supported ergodic invariant probability measure for the adic transformation on the space of infinite paths in the graph that underlies the eulerian numbers. This result may partially justify a frequent assumption about the equidistribution of random permutations.
LA - eng
KW - random permutations; eulerian numbers; adic transformation; invariant measures; ergodic transformations; Bratteli diagrams; rises and falls; Eulerian numbers
UR - http://eudml.org/doc/77995
ER -
References
top- [1] S. Bailey, M. Keane, K. Petersen and I. Salama. Ergodicity of the adic transformation on the Euler graph. Math. Proc. Cambridge Philos. Soc. 141 (2006) 231–238. Zbl1112.28012MR2265871
- [2] L. Carlitz, D. C. Kurtz, R. Scoville and O. P. Stackelberg. Asymptotic properties of Eulerian numbers. Z. Wahrsch. Verw. Gebiete 23 (1972) 47–54. Zbl0226.60049MR309856
- [3] L. Comtet. Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edition, 1974. The Art of Finite and Infinite Expansions. Zbl0283.05001MR460128
- [4] C.-G. Esseen. On the application of the theory of probability to two combinatorial problems involving permutations. In Proceedings of the Seventh Conference on Probability Theory (Braşov, 1982). VNU Sci. Press, Utrecht, 1985. Zbl0619.60013MR867425
- [5] S. B. Frick. Limited scope adic transformations. In preparation. Zbl1175.37004
- [6] S. B. Frick. Dynamical properties of some non-stationary, non-simple Bratteli–Vershik systems. Ph.D. dissertation, Univ. North Carolina, Chapel Hill (2006).
- [7] S. B. Frick and K. Petersen. Connections between adic transformations and random walks. In progress. Zbl1217.37004
- [8] J. C. Fu and W. Y. W. Lou. Joint distribution of rises and falls. Ann. Inst. Statist. Math. 52 (2000) 415–425. Zbl0980.62010MR1794242
- [9] J. C. Fu, W. Y. W. Lou and Y.-J. Wang. On the exact distributions of Eulerian and Simon Newcomb numbers associated with random permutations. Statist. Probab. Lett. 42 (1999) 115–125. Zbl1057.62503MR1680086
- [10] T. Giordano, I. F. Putnam and C. F. Skau. Topological orbit equivalence and C*-crossed products. J. Reine Angew. Math. 469 (1995) 51–111. Zbl0834.46053MR1363826
- [11] R. H. Herman, I. F. Putnam and C. F. Skau. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3 (1992) 827–864. Zbl0786.46053MR1194074
- [12] X. Méla. Dynamical properties of the Pascal adic and related systems. Ph.D. dissertation, Univ. North Carolina, Chapel Hill (2002).
- [13] X. Méla and K. Petersen. Dynamical properties of the Pascal adic transformation. Ergodic Theory Dynam. Systems 25 (2005) 227–256. Zbl1069.37007MR2122921
- [14] D. S. Ornstein, D. J. Rudolph and B. Weiss. Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 37 (1982). Zbl0504.28019MR653094
- [15] G. Oshanin and R. Voituriez. Random walk generated by random permutations of {1, 2, 3, …, n+1}. J. Phys. A: Math. Gen. 37 (2004) 6221–6241. Zbl1056.60045MR2073602
- [16] K. Petersen and K. Schmidt. Symmetric Gibbs measures. Trans. Amer. Math. Soc. 349 (1997) 2775–2811. Zbl0873.28008MR1422906
- [17] A. M. Vershik. Description of invariant measures for the actions of some infinite-dimensional groups. Dokl. Akad. Nauk SSSR 218 (1974) 749–752. Zbl0324.28014MR372161
- [18] A. M. Vershik and S. V. Kerov. Asymptotic theory of characters of the symmetric group. Funkts. Anal. Prilozhen. 15 (1981) 15–27. Zbl0507.20006MR639197
- [19] A. M. Vershik and S. V. Kerov. Locally semisimple algebras, combinatorial theory and the K0-functor. J. Soviet Math. 38 (1987) 1701–1733. Zbl0623.46036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.