Hitting time of a corner for a reflected diffusion in the square
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 5, page 946-961
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDelarue, F.. "Hitting time of a corner for a reflected diffusion in the square." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 946-961. <http://eudml.org/doc/77998>.
@article{Delarue2008,
abstract = {We discuss the long time behavior of a two-dimensional reflected diffusion in the unit square and investigate more specifically the hitting time of a neighborhood of the origin. We distinguish three different regimes depending on the sign of the correlation coefficient of the diffusion matrix at the point 0. For a positive correlation coefficient, the expectation of the hitting time is uniformly bounded as the neighborhood shrinks. For a negative one, the expectation explodes in a polynomial way as the diameter of the neighborhood vanishes. In the null case, the expectation explodes at a logarithmic rate. As a by-product, we establish in the different cases the attainability or nonattainability of the origin for the reflected process. From a practical point of view, the considered hitting time appears as a deadlock time in various resource sharing problems.},
author = {Delarue, F.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reflected diffusions; hitting times; Lyapunov functions; distributed algorithms},
language = {eng},
number = {5},
pages = {946-961},
publisher = {Gauthier-Villars},
title = {Hitting time of a corner for a reflected diffusion in the square},
url = {http://eudml.org/doc/77998},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Delarue, F.
TI - Hitting time of a corner for a reflected diffusion in the square
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 946
EP - 961
AB - We discuss the long time behavior of a two-dimensional reflected diffusion in the unit square and investigate more specifically the hitting time of a neighborhood of the origin. We distinguish three different regimes depending on the sign of the correlation coefficient of the diffusion matrix at the point 0. For a positive correlation coefficient, the expectation of the hitting time is uniformly bounded as the neighborhood shrinks. For a negative one, the expectation explodes in a polynomial way as the diameter of the neighborhood vanishes. In the null case, the expectation explodes at a logarithmic rate. As a by-product, we establish in the different cases the attainability or nonattainability of the origin for the reflected process. From a practical point of view, the considered hitting time appears as a deadlock time in various resource sharing problems.
LA - eng
KW - reflected diffusions; hitting times; Lyapunov functions; distributed algorithms
UR - http://eudml.org/doc/77998
ER -
References
top- [1] S. Balaji and S. Ramasubramanian. Passage time moments for multidimensional diffusions. J. Appl. Probab. 37 (2000) 246–251. Zbl0965.60068MR1761674
- [2] F. Comets, F. Delarue and R. Schott. Distributed algorithms in an ergodic Markovian environment. Random Structures Algorithms 30 (2007) 131–167. Zbl1178.68663
- [3] J. G. Dai and R. J. Williams. Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra. Theory Probab. Appl. 40 (1996) 1–40. MR1346729
- [4] J. G. Dai and R. J. Williams. Letter to the editors: Remarks on our paper “existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra”. Theory Probab. Appl. 50 (2006) 346–347. Zbl0854.60078MR2222685
- [5] R. D. DeBlassie. Explicit semimartingale representation of Brownian motion in a wedge. Stochastic Process. Appl. 34 (1990) 67–97. Zbl0694.60076MR1039563
- [6] R. D. DeBlassie, D. Hobson, E. A. Housworth and E. H. Toby. Escape rates for transient reflected Brownian motion in wedges and cones. Stochastics Stochastics Rep. 57 (1996) 199–211. Zbl0891.60038MR1425365
- [7] G. Fayolle, V. A. Malyshev and M. V. Menshikov. Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge, 1995. Zbl0823.60053MR1331145
- [8] A. Friedman. Stochastic Differential Equations and Applications. Vol. 1. Probability and Mathematical Statistics, Academic Press, New York–London, 1975. Zbl0323.60056MR494490
- [9] N. Guillotin-Plantard and R. Schott. Distributed algorithms with dynamic random transitions. Random Structures Algorithms 21 (2002) 371–396. Zbl1057.68133MR1945376
- [10] R. Z. Hasminskii. Stochastic Stability of Differential Equations. Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, Md, 1980. Zbl0441.60060MR600653
- [11] Y. Kwon and R. J. Williams. Reflected Brownian motion in a cone with radially homogeneous reflection field. Trans. Amer. Math. Soc. 327 (1991) 739–780. Zbl0742.60075MR1028760
- [12] P.-L. Lions and A.-S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511–537. Zbl0598.60060MR745330
- [13] G. Louchard. Some distributed algorithms revisited. Commun. Statist. Stochastic Models 11 (1995) 563–586. Zbl0840.90057MR1358937
- [14] G. Louchard and R. Schott. Probabilistic analysis of some distributed algorithms. Random Structures Algorithms 2 (1991) 151–186. Zbl0732.68055MR1099798
- [15] G. Louchard, R. Schott, M. Tolley and P. Zimmermann. Random walks, heat equations and distributed algorithms. J. Comput. Appl. Math. 53 (1994) 243–274. Zbl0820.68052MR1306128
- [16] R. S. Maier. Colliding stacks: A large deviations analysis. Random Structures Algorithms 2 (1991) 379–420. Zbl0737.60097MR1125956
- [17] R. S. Maier and R. Schott. Exhaustion of shared memory: stochastic results. In: Proceedings of WADS’93, LNCS No 709, Springer Verlag, 1993, pp. 494–505. MR1260504
- [18] M. Menshikov and R. J. Williams. Passage-time moments for continuous non-negative stochastic processes and applications. Adv. in Appl. Probab. 28 (1996) 747–762. Zbl0857.60042MR1404308
- [19] K. Ramanan. Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11 (2006) 934–992. Zbl1111.60043MR2261058
- [20] M. I. Reiman and R. J. Williams. A boundary property of semimartingale reflecting Brownian motions. Probab. Theory Related Fields 77 (1988) 87–97. Zbl0617.60081MR921820
- [21] M. I. Reiman and R. J. Williams. Correction to: “A boundary property of semimartingale reflecting Brownian motions” [Probab. Theory Related Fields 77 87–97]. Probab. Theory Related Fields 80 (1989) 633. Zbl0617.60081MR921820
- [22] Y. Saisho. Stochastic differential equations for multidimensional domain with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455–477. Zbl0591.60049MR873889
- [23] L. Słomiński. Euler’s approximations of solutions of SDEs with reflecting boundary. Stochastic Process. Appl. 94 (2001) 317–337. Zbl1053.60062MR1840835
- [24] H. Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. 9 (1979) 163–177. Zbl0423.60055MR529332
- [25] L. M. Taylor and R. J. Williams. Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. Probab. Theory Related Fields 96 (1993) 283–317. Zbl0794.60079MR1231926
- [26] S. R. S. Varadhan and R. J. Williams. Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math. 38 (1985) 405–443. Zbl0579.60082MR792398
- [27] R. J. Williams. Recurrence classification and invariant measure for reflected Brownian motion in a wedge. Ann. Probab. 13 (1985) 758–778. Zbl0596.60078MR799421
- [28] R. J. Williams. Reflected Brownian motion in a wedge: semimartingale property. Z. Wahrsch. Verw. Gebiete 69 (1985) 161–176. Zbl0535.60042MR779455
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.