Planar Lorentz process in a random scenery
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 818-839
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Aaronson and M. Denker. Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1 (2001) 193–237. Zbl1039.37002MR1840194
- [2] P. Billingsley. Convergence of Probability Measures, 1st edition. Wiley, New York, 1968. Zbl0172.21201MR233396
- [3] E. Bolthausen. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115. Zbl0679.60028MR972774
- [4] L. A. Bunimovich and Ya. G. Sinai. Markov partitions for dispersed billiards. Commun. Math. Phys. 78 (1980) 247–280. Zbl0453.60098MR597749
- [5] L. A. Bunimovich and Ya. G. Sinai. Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78 (1981) 479–497. Zbl0459.60099MR606459
- [6] L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov. Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105–152. (Translation from Uspekhi Mat. Nauk 45 (1990) 97–134.) Zbl0721.58036MR1071936
- [7] L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov. Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47–106. (Translation from Usp. Mat. Nauk 46 (1991) 43–92.) Zbl0780.58029MR1138952
- [8] J.-P. Conze. Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Ergodic Theory Dynam Systems 19 (1999) 1233–1245. Zbl0973.37007MR1721618
- [9] D. Dolgopyat, D. Szász and T. Varjú. Recurrence properties of Lorentz gas. Duke Math. J. 142 (2008) 241–281. Zbl1136.37022MR2401621
- [10] G. Gallavotti and D. S. Ornstein. Billiards and Bernoulli schemes. Commun. Math. Phys. 38 (1974) 83–101. Zbl0313.58017MR355003
- [11] Y. Guivarc’h. Application d’un théorème limite local à la transience et à la récurrence de marches aléatoires. In Théorie du potentiel (Orsay, 1983) 301–332. Lecture Notes in Math. 1096. Springer, Berlin, 1984. Zbl0562.60074MR890364
- [12] Y. Guivarc’h and J. Hardy. Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. H. Poincaré Probab. Statist. 24 (1988) 73–98. Zbl0649.60041MR937957
- [13] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766. Springer, Berlin, 2001. Zbl0983.60005MR1862393
- [14] E. Le Page. Théorèmes limites pour les produits de matrices aléatoires. In Probability Measures on Groups (Oberwolfach, 1981) 258–303. Lecture Notes in Math. 928. Springer, Berlin, 1982. Zbl0506.60019MR669072
- [15] S. V. Nagaev. Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2 (1957) 378–406. (Translation from Teor. Veroyatn. Primen. 2 (1958) 389–416.) Zbl0078.31804MR94846
- [16] S. V. Nagaev. More exact statement of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6 (1961) 62–81. (Translation from Teor. Veroyatn. Primen. 6 (1961) 67–86.) Zbl0116.10602MR131291
- [17] C. M. Newman and A. L. Wright. An invariance principle for certain dependent sequences. Ann. Probab. 9 (1981) 671–675. Zbl0465.60009MR624694
- [18] F. Pène. Applications des propriétés stochastiques des systèmes dynamiques de type hyperbolique: Ergodicité du billard dispersif dans le plan, moyennisation d’équations différentielles perturbées par un flot ergodique. Thèse de l’Université de Rennes 1, 2000.
- [19] F. Pène. Applications des propriétés stochastiques du billard dispersif. C. R. Math. Acad. Sci. Paris. Sér. I Math. 330 (2000) 1103–1106. Zbl0976.37018MR1775918
- [20] F. Pène. Averaging method for differential equations perturbed by dynamical systems. ESAIM Probab. Statist. 6 (2002) 33–88. Zbl1006.37011MR1905767
- [21] K. Schmidt. On joint recurrence. C. R. Acad. Math. Sci. Paris Sér. I Math. 327 (1998) 837–842. Zbl0923.60090MR1663750
- [22] N. Simanyi. Towards a proof of recurrence for the Lorentz process. In Dynamical Systems and Ergodic Theory (Warsaw, 1986) 265–276. Banach Cent. Publ. 23. PWN, Warsaw, 1989. Zbl0707.60103MR1102720
- [23] Ya. G. Sinai. Dynamical systems with elastic reflections. Russian Math. Surveys 25 (1970) 137–189. Zbl0263.58011
- [24] D. Szász and T. Varjú. Local limit theorem for the Lorentz process and its recurrence in the plane. Ergodic Theory Dynam. Systems 24 (2004) 257–278. Zbl1115.37009MR2041271
- [25] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998) 585–650. Zbl0945.37009MR1637655