Planar Lorentz process in a random scenery
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 818-839
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPène, Françoise. "Planar Lorentz process in a random scenery." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 818-839. <http://eudml.org/doc/78046>.
@article{Pène2009,
abstract = {We consider the periodic planar Lorentz process with convex obstacles (and with finite horizon). In this model, a point particle moves freely with elastic reflection at the fixed convex obstacles. The random scenery is given by a sequence of independent, identically distributed, centered random variables with finite and non-null variance. To each obstacle, we associate one of these random variables. We suppose that each time the particle hits an obstacle, it wins the amount given by the random variable associated to the obstacle. We prove a convergence in distribution to a Wiener process for the total amount won by the particle (normalized by $\sqrt\{n\log (n)\}$) when the timen goes to infinity. Such a result has been established by Bolthausen [Ann. Probab.17 (1989) 108–115)] in the case of random walks in ℤ2 given by sums of independent identically distributed random variables. We follow the scheme of his proof. The lack of independence will be compensated by some extensions of the local limit theorem proved by Szász and Varjú in [Ergodic Theory Dynam. Systems24 (2004) 257–278]. This paper answers a question of Szász about the asymptotic behaviour of ∑k=0n−1ζSk where (ζℓ)ℓ is a sequence of i.i.d. centered random variables (with finite and non-null variance) and where Sk is the number of the cell at the kth reflection.},
author = {Pène, Françoise},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lorentz process; finite horizon; random scenery; limit theorem; billiard; infinite measure},
language = {eng},
number = {3},
pages = {818-839},
publisher = {Gauthier-Villars},
title = {Planar Lorentz process in a random scenery},
url = {http://eudml.org/doc/78046},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Pène, Françoise
TI - Planar Lorentz process in a random scenery
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 818
EP - 839
AB - We consider the periodic planar Lorentz process with convex obstacles (and with finite horizon). In this model, a point particle moves freely with elastic reflection at the fixed convex obstacles. The random scenery is given by a sequence of independent, identically distributed, centered random variables with finite and non-null variance. To each obstacle, we associate one of these random variables. We suppose that each time the particle hits an obstacle, it wins the amount given by the random variable associated to the obstacle. We prove a convergence in distribution to a Wiener process for the total amount won by the particle (normalized by $\sqrt{n\log (n)}$) when the timen goes to infinity. Such a result has been established by Bolthausen [Ann. Probab.17 (1989) 108–115)] in the case of random walks in ℤ2 given by sums of independent identically distributed random variables. We follow the scheme of his proof. The lack of independence will be compensated by some extensions of the local limit theorem proved by Szász and Varjú in [Ergodic Theory Dynam. Systems24 (2004) 257–278]. This paper answers a question of Szász about the asymptotic behaviour of ∑k=0n−1ζSk where (ζℓ)ℓ is a sequence of i.i.d. centered random variables (with finite and non-null variance) and where Sk is the number of the cell at the kth reflection.
LA - eng
KW - Lorentz process; finite horizon; random scenery; limit theorem; billiard; infinite measure
UR - http://eudml.org/doc/78046
ER -
References
top- [1] A. Aaronson and M. Denker. Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1 (2001) 193–237. Zbl1039.37002MR1840194
- [2] P. Billingsley. Convergence of Probability Measures, 1st edition. Wiley, New York, 1968. Zbl0172.21201MR233396
- [3] E. Bolthausen. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115. Zbl0679.60028MR972774
- [4] L. A. Bunimovich and Ya. G. Sinai. Markov partitions for dispersed billiards. Commun. Math. Phys. 78 (1980) 247–280. Zbl0453.60098MR597749
- [5] L. A. Bunimovich and Ya. G. Sinai. Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78 (1981) 479–497. Zbl0459.60099MR606459
- [6] L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov. Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105–152. (Translation from Uspekhi Mat. Nauk 45 (1990) 97–134.) Zbl0721.58036MR1071936
- [7] L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov. Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47–106. (Translation from Usp. Mat. Nauk 46 (1991) 43–92.) Zbl0780.58029MR1138952
- [8] J.-P. Conze. Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Ergodic Theory Dynam Systems 19 (1999) 1233–1245. Zbl0973.37007MR1721618
- [9] D. Dolgopyat, D. Szász and T. Varjú. Recurrence properties of Lorentz gas. Duke Math. J. 142 (2008) 241–281. Zbl1136.37022MR2401621
- [10] G. Gallavotti and D. S. Ornstein. Billiards and Bernoulli schemes. Commun. Math. Phys. 38 (1974) 83–101. Zbl0313.58017MR355003
- [11] Y. Guivarc’h. Application d’un théorème limite local à la transience et à la récurrence de marches aléatoires. In Théorie du potentiel (Orsay, 1983) 301–332. Lecture Notes in Math. 1096. Springer, Berlin, 1984. Zbl0562.60074MR890364
- [12] Y. Guivarc’h and J. Hardy. Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. H. Poincaré Probab. Statist. 24 (1988) 73–98. Zbl0649.60041MR937957
- [13] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766. Springer, Berlin, 2001. Zbl0983.60005MR1862393
- [14] E. Le Page. Théorèmes limites pour les produits de matrices aléatoires. In Probability Measures on Groups (Oberwolfach, 1981) 258–303. Lecture Notes in Math. 928. Springer, Berlin, 1982. Zbl0506.60019MR669072
- [15] S. V. Nagaev. Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2 (1957) 378–406. (Translation from Teor. Veroyatn. Primen. 2 (1958) 389–416.) Zbl0078.31804MR94846
- [16] S. V. Nagaev. More exact statement of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6 (1961) 62–81. (Translation from Teor. Veroyatn. Primen. 6 (1961) 67–86.) Zbl0116.10602MR131291
- [17] C. M. Newman and A. L. Wright. An invariance principle for certain dependent sequences. Ann. Probab. 9 (1981) 671–675. Zbl0465.60009MR624694
- [18] F. Pène. Applications des propriétés stochastiques des systèmes dynamiques de type hyperbolique: Ergodicité du billard dispersif dans le plan, moyennisation d’équations différentielles perturbées par un flot ergodique. Thèse de l’Université de Rennes 1, 2000.
- [19] F. Pène. Applications des propriétés stochastiques du billard dispersif. C. R. Math. Acad. Sci. Paris. Sér. I Math. 330 (2000) 1103–1106. Zbl0976.37018MR1775918
- [20] F. Pène. Averaging method for differential equations perturbed by dynamical systems. ESAIM Probab. Statist. 6 (2002) 33–88. Zbl1006.37011MR1905767
- [21] K. Schmidt. On joint recurrence. C. R. Acad. Math. Sci. Paris Sér. I Math. 327 (1998) 837–842. Zbl0923.60090MR1663750
- [22] N. Simanyi. Towards a proof of recurrence for the Lorentz process. In Dynamical Systems and Ergodic Theory (Warsaw, 1986) 265–276. Banach Cent. Publ. 23. PWN, Warsaw, 1989. Zbl0707.60103MR1102720
- [23] Ya. G. Sinai. Dynamical systems with elastic reflections. Russian Math. Surveys 25 (1970) 137–189. Zbl0263.58011
- [24] D. Szász and T. Varjú. Local limit theorem for the Lorentz process and its recurrence in the plane. Ergodic Theory Dynam. Systems 24 (2004) 257–278. Zbl1115.37009MR2041271
- [25] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998) 585–650. Zbl0945.37009MR1637655
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.