On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 1002-1019
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topXu, Tiange, and Zhang, Tusheng. "On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1002-1019. <http://eudml.org/doc/78050>.
@article{Xu2009,
abstract = {In this paper, we establish a small time large deviation principle (small time asymptotics) for the two-dimensional stochastic Navier–Stokes equations driven by multiplicative noise, which not only involves the study of the small noise, but also the investigation of the effect of the small, but highly nonlinear, unbounded drifts.},
author = {Xu, Tiange, Zhang, Tusheng},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic Navier–Stokes equation; small time asymptotics; large deviation principle; stochastic Navier-Stokes equation},
language = {eng},
number = {4},
pages = {1002-1019},
publisher = {Gauthier-Villars},
title = {On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations},
url = {http://eudml.org/doc/78050},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Xu, Tiange
AU - Zhang, Tusheng
TI - On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1002
EP - 1019
AB - In this paper, we establish a small time large deviation principle (small time asymptotics) for the two-dimensional stochastic Navier–Stokes equations driven by multiplicative noise, which not only involves the study of the small noise, but also the investigation of the effect of the small, but highly nonlinear, unbounded drifts.
LA - eng
KW - stochastic Navier–Stokes equation; small time asymptotics; large deviation principle; stochastic Navier-Stokes equation
UR - http://eudml.org/doc/78050
ER -
References
top- [1] S. Aida and H. Kawabi. Short time asymptotics of a certain infinite dimensional diffusion process. In Stochastic Analysis and Related Topics, VII (Kusadasi, 1998) 77–124. Progr. Probab. 48. Birkhäuser Boston, Boston, MA, 2001. Zbl0976.60077MR1915450
- [2] S. Aida and T. S. Zhang. On the small time asymptotics of diffusion processes on path groups. Potential Anal. 16 (2002) 67–78. Zbl0993.60026MR1880348
- [3] M. T. Barlow and M. Yor. Semi-martingale inequalities via the Garsia–Rodemich–Rumsey lemma, and applications to local time. J. Funct. Anal. 49 (1982) 198–229. Zbl0505.60054MR680660
- [4] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. Zbl0761.60052MR1207136
- [5] B. Davis. On the Lp-norms of stochastic integrals and other martingales. Duke Math. J. 43 1976697–704. Zbl0349.60061MR418219
- [6] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett, Boston, 1993. Zbl0793.60030MR1202429
- [7] S. Z. Fang and T. S. Zhang. On the small time behavior of Ornstein–Uhlenbeck processes with unbounded linear drifts. Probab. Theory Related Fields 114 (1999) 487–504. Zbl0932.60071MR1709278
- [8] F. Flandoli and D. Gatarek. Martingale and stationary solution for stochastic Navier–Stokes equations. Probab. Theory Related Fields 102 (1995) 367–391. Zbl0831.60072MR1339739
- [9] F. Flandoli. Dissipativity and invariant measures for stochastic Navier–Stokes equations. Nonlinear Differential Equations Appl. 1 (1994) 403–423. Zbl0820.35108MR1300150
- [10] M. Gourcy. A large deviation principle for 2D stochastic Navier–Stokes equation. Stochastic Process. Appl. 117 (2007) 904–927. Zbl1117.60027MR2330725
- [11] M. Hairer and J. C. Mattingly. Ergodicity of the 2-D Navier–Stokes equation with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006) 993–1032. Zbl1130.37038MR2259251
- [12] M. Hino and J. Ramirez. Small-time Gaussian behaviour of symmetric diffusion semigroup. Ann. Probab. 31 (2003) 1254–1295. Zbl1085.31008MR1988472
- [13] R. Mikulevicius and B. L. Rozovskii. Global L2-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33 (2005) 137–176. Zbl1098.60062MR2118862
- [14] S. S. Sritharan and P. Sundar. Large deviation for the two dimensional Navier–Stokes equations with multiplicative noise. Stochastic Process. Appl. 116 (2006) 1636–1659. Zbl1117.60064MR2269220
- [15] R. Teman. Navier–Stokes Equations and Nonlinear Functional Analysis. Soc. Industrial Appl. Math., Philadelphia, PA, 1983. Zbl0833.35110MR764933
- [16] S. R. S. Varadhan. Diffusion processes in small time intervals. Comm. Pure. Appl. Math. 20 (1967) 659–685. Zbl0278.60051MR217881
- [17] T. S. Zhang. On the small time asymptotics of diffusion processes on Hilbert spaces. Ann. Probab. 28 (2000) 537–557. Zbl1044.60071MR1782266
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.