Functional viability theorems for differential inclusions with memory
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 3, page 179-204
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHaddad, Georges. "Functional viability theorems for differential inclusions with memory." Annales de l'I.H.P. Analyse non linéaire 1.3 (1984): 179-204. <http://eudml.org/doc/78072>.
@article{Haddad1984,
author = {Haddad, Georges},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multivalued dynamical system with memory; viable solutions},
language = {eng},
number = {3},
pages = {179-204},
publisher = {Gauthier-Villars},
title = {Functional viability theorems for differential inclusions with memory},
url = {http://eudml.org/doc/78072},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Haddad, Georges
TI - Functional viability theorems for differential inclusions with memory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 3
SP - 179
EP - 204
LA - eng
KW - multivalued dynamical system with memory; viable solutions
UR - http://eudml.org/doc/78072
ER -
References
top- [1] J.P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, 1983 (to appear). Zbl0538.34007MR755330
- [2] H. Brezis, On a characterization of flow invariant sets. Comm. Pure Appl. Math., t. 23, 1970, p. 261-263. Zbl0191.38703MR257511
- [3] C. Castaing, Equation différentielle multivoque avec contrainte sur l'état dans les espaces de Banach. Séminaire d'analyse convexe13, Montpellier, 1978. MR521156
- [4] M.G. Crandall, A generalization of Peano's theorem and flow invariance. Proc. Amer. Math. Soc., t. 36, 1972, p. 151-155. Zbl0271.34084MR306586
- [5] S. Gautier, Equations différentielles multivoques sur un fermé. Publication interne, Université de Pau, 1976.
- [6] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory. Israel Journal of Mathematics, t. 39, n° 1-2, 1981, p. 83-100. Zbl0462.34048MR617292
- [7] J. Hale, Theory of functional differential equations, Springer-Verlag, 1977. Zbl0352.34001MR508721
- [8] M. Larrieu. Invariance d'un fermé pour un champ de vecteurs de Caratheodory. Publications mathématiques de Pau, 1981.
- [9] S. Leela, V. Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces. Journal of nonlinear Analysis, Theory and Applications, t. 2, 1978, p. 391-423. Zbl0383.34053MR512653
- [10] H. Methlouthi, Equations différentielles multivoques sur un graphe localement compact. Cahiers de Mathématiques de la Décision, n° 7713, 1977. Zbl0355.34003MR445083
- [11] N. Nagumo, Uber die Laga des Integralkurven gewöhnlicher Differential Gleichungen. Proc. Phys. Math. Soc. Japan, t. 24, 1942, p. 551-559. Zbl0061.17204MR15180
- [12] G. Seifert, Positively invariant closed sets for systems of delay differential equations. Journal of Differential Equations, t. 22, 1976, p. 292-304. Zbl0332.34068MR427781
- [13] J.A. Yorke, Invariance for ordinary differential equations. Math-systems Theory, t. 1, 1967, p. 353-372. Zbl0155.14201MR226105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.