Functional viability theorems for differential inclusions with memory

Georges Haddad

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 3, page 179-204
  • ISSN: 0294-1449

How to cite

top

Haddad, Georges. "Functional viability theorems for differential inclusions with memory." Annales de l'I.H.P. Analyse non linéaire 1.3 (1984): 179-204. <http://eudml.org/doc/78072>.

@article{Haddad1984,
author = {Haddad, Georges},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multivalued dynamical system with memory; viable solutions},
language = {eng},
number = {3},
pages = {179-204},
publisher = {Gauthier-Villars},
title = {Functional viability theorems for differential inclusions with memory},
url = {http://eudml.org/doc/78072},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Haddad, Georges
TI - Functional viability theorems for differential inclusions with memory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 3
SP - 179
EP - 204
LA - eng
KW - multivalued dynamical system with memory; viable solutions
UR - http://eudml.org/doc/78072
ER -

References

top
  1. [1] J.P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, 1983 (to appear). Zbl0538.34007MR755330
  2. [2] H. Brezis, On a characterization of flow invariant sets. Comm. Pure Appl. Math., t. 23, 1970, p. 261-263. Zbl0191.38703MR257511
  3. [3] C. Castaing, Equation différentielle multivoque avec contrainte sur l'état dans les espaces de Banach. Séminaire d'analyse convexe13, Montpellier, 1978. MR521156
  4. [4] M.G. Crandall, A generalization of Peano's theorem and flow invariance. Proc. Amer. Math. Soc., t. 36, 1972, p. 151-155. Zbl0271.34084MR306586
  5. [5] S. Gautier, Equations différentielles multivoques sur un fermé. Publication interne, Université de Pau, 1976. 
  6. [6] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory. Israel Journal of Mathematics, t. 39, n° 1-2, 1981, p. 83-100. Zbl0462.34048MR617292
  7. [7] J. Hale, Theory of functional differential equations, Springer-Verlag, 1977. Zbl0352.34001MR508721
  8. [8] M. Larrieu. Invariance d'un fermé pour un champ de vecteurs de Caratheodory. Publications mathématiques de Pau, 1981. 
  9. [9] S. Leela, V. Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces. Journal of nonlinear Analysis, Theory and Applications, t. 2, 1978, p. 391-423. Zbl0383.34053MR512653
  10. [10] H. Methlouthi, Equations différentielles multivoques sur un graphe localement compact. Cahiers de Mathématiques de la Décision, n° 7713, 1977. Zbl0355.34003MR445083
  11. [11] N. Nagumo, Uber die Laga des Integralkurven gewöhnlicher Differential Gleichungen. Proc. Phys. Math. Soc. Japan, t. 24, 1942, p. 551-559. Zbl0061.17204MR15180
  12. [12] G. Seifert, Positively invariant closed sets for systems of delay differential equations. Journal of Differential Equations, t. 22, 1976, p. 292-304. Zbl0332.34068MR427781
  13. [13] J.A. Yorke, Invariance for ordinary differential equations. Math-systems Theory, t. 1, 1967, p. 353-372. Zbl0155.14201MR226105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.