On the dynamics of Bose-Einstein condensation
E. Buffet; Ph. de Smedt; J. V. Pulè
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 6, page 413-451
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBuffet, E., de Smedt, Ph., and Pulè, J. V.. "On the dynamics of Bose-Einstein condensation." Annales de l'I.H.P. Analyse non linéaire 1.6 (1984): 413-451. <http://eudml.org/doc/78084>.
@article{Buffet1984,
author = {Buffet, E., de Smedt, Ph., Pulè, J. V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Bose-Einstein condensation; nonlinear; evolution of a gas of Bosons; Lyapunov functionals; semigroup of contractions},
language = {eng},
number = {6},
pages = {413-451},
publisher = {Gauthier-Villars},
title = {On the dynamics of Bose-Einstein condensation},
url = {http://eudml.org/doc/78084},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Buffet, E.
AU - de Smedt, Ph.
AU - Pulè, J. V.
TI - On the dynamics of Bose-Einstein condensation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 6
SP - 413
EP - 451
LA - eng
KW - Bose-Einstein condensation; nonlinear; evolution of a gas of Bosons; Lyapunov functionals; semigroup of contractions
UR - http://eudml.org/doc/78084
ER -
References
top- [1] E. Buffet, Ph. DE Smedt and J.V. Pule, On the dynamics of the open Bose gas. Ann. Phys. (N. Y.), t. 155, 1984, p. 269. Zbl0545.46058MR753337
- [2] L. Arkeryd, On the Boltzmann equation ; Part I: existence. Arch. Rat. Mechs. Anal., t. 45, 1972, p. 1. Zbl0245.76059MR339665
- [3] L. Arkeryd, On the Boltzmann equation ; Part II: the full initial value problem. Arch. Rat. Mechs. Anal., t. 45, 1972, p. 17. Zbl0245.76060MR339666
- [4] M. Aizenman and T.A. Bak, Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys., t. 65, 1979, p. 203. Zbl0458.76062MR530150
- [5] W.G. Sullivan, The L2-spectral gap of certain positive recurrent Markov chains and jump processes. Z. Warscheinlichkeitstheorie (in press). Zbl0535.60066
- [6] R. Alicki and J. Messer, Nonlinear quantum dynamical semi-groups for many-body open systems. J. Stat. Phys., t. 32, 1983, p. 299. Zbl0584.35054MR715028
- [7] E.B. Davies, Markovian master equations. Comm. Math. Phys., t. 39, 1974, p. 91. Zbl0294.60080MR359633
- [8] E.B. Davies, Markovian master equations II. Math. Ann., t. 219, 1976, p. 147. Zbl0323.60061MR395638
- [9] E. Buffet and J.V. Pulè, Fluctuation properties of the imperfect Bose gas. J. Math. Phys., t. 24, 1983, p. 1608. MR708683
- [10] M. Reed and B. Simon, Analysis of operators, Methods of modern mathematical physics, Vol. 4, Academic Press, New York and London, 1978. Zbl0401.47001
- [11] M. Reed and B. Simon, Functional analysis, Methods of modern mathematical physics, Vol. 1, Academic Press, New York and London1972. Zbl0242.46001
- [12] E.B. Davies, One-parameter semigroups, London Mathematical Society Monographs, Vol. 15, Academic Press, London and New York, 1980. Zbl0457.47030MR591851
- [13] R.H. Martin, Nonlinear operators and differential equations in Banach spaces. John Wiley, New York and London, 1976. Zbl0333.47023
- [14] Ph. De Smedt, Ph. D. thesis, Leuven University, 1983.
- [15] W. Feller, An introduction to probability theory and its applications, Vol. 2. John Wiley, New York, 1971. Zbl0219.60003MR270403
- [16] M. Fannes, The entropy density of quasi-free states for a continuous boson system. Ann. Inst. Henri Poincaré, t. A 28, 1978, p. 187. MR496234
- [17] R.H. Critchley and J.T. Lewis, The entropy density of quasi-free states. DIAS, TP, 75, 22, unpublished.
- [18] J. Weidmann, Linear operators in Hilbert spaces.Graduate texts in mathematics. Vol. 68. Springer Verlag, New York and Berlin, 1980. Zbl0434.47001MR566954
- [19] P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys., t. 49, 1977. p. 435.
- [20] M. Luban, Generalized Landau theories, in Phase transitions and critical phenomena, Vol. 5A. C. Domb and M. S. Green editors. Academic Press, London and New York, 1976. MR503346
- [21] J.D. Gunton and M.J. Buckingham, Condensation of the ideal Bose gas as a co-operative transition. Phys. Rev., t. 166, 1968, p. 152.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.