On minimal surfaces with free boundaries in given homotopy classes

Peter Tolksdorf

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 3, page 157-165
  • ISSN: 0294-1449

How to cite

top

Tolksdorf, Peter. "On minimal surfaces with free boundaries in given homotopy classes." Annales de l'I.H.P. Analyse non linéaire 2.3 (1985): 157-165. <http://eudml.org/doc/78094>.

@article{Tolksdorf1985,
author = {Tolksdorf, Peter},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimal surfaces; free boundary problem; pinching condition; homotopy classes},
language = {eng},
number = {3},
pages = {157-165},
publisher = {Gauthier-Villars},
title = {On minimal surfaces with free boundaries in given homotopy classes},
url = {http://eudml.org/doc/78094},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Tolksdorf, Peter
TI - On minimal surfaces with free boundaries in given homotopy classes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 3
SP - 157
EP - 165
LA - eng
KW - minimal surfaces; free boundary problem; pinching condition; homotopy classes
UR - http://eudml.org/doc/78094
ER -

References

top
  1. [1] H.W. Alt, F. Tomi, Regularity and finiteness of solutions to the free boundary problem for minimal surfaces, preprint. Zbl0549.53006MR779219
  2. [2] R. Courant, Dirichlet's principle, conformal mappings, and minimal surfaces, reprint by Springer-Verlag, New York-Heidelberg-Berlin, 1977. Zbl0354.30012MR454858
  3. [3] M. Grüter, J. Jost, On embedded minimal surfaces in convex bodies, preprint. Zbl0617.49017
  4. [4] S. Hildebrant, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie II. Freie Ränder. Arch. Rat. Mech. Anal., t. 39, 1970, p. 275-293. Zbl0225.49039MR273524
  5. [5] S. Hildebrandt, J.C.C. Nitsche, Minimal surfaces with free boundaries, Acta Math., t. 23, 1979, p. 803-818. Zbl0444.49035MR549778
  6. [6] S. Hildebrandt, J.C.C. Nitsche, Geometrical properties of minimal surfaces with free boundaries. Math. Z., t. 184, 1983, p. 497-509. Zbl0505.49020MR719490
  7. [7] A. Küster, An optimal estimate of the free boundary of a minimal surface. Journal f. d. reine angew. Math., t. 349, 1984, p. 55-62. Zbl0527.53006MR743964
  8. [8] H. Lewy, On minimal surfaces with partially free boundary. Comm. P. Appl. Math., t. 4, 1951, p. 1-13. MR52711
  9. [9] W.H. Meeks, S.T. Yau, Topology of three dimensional manifolds and the embedding problem in minimal surface theory. Ann. of Math., t. 112, 1980, p. 441-484. Zbl0458.57007MR595203
  10. [10] J.C.C. Nitsche, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0319.53003MR448224
  11. [11] J.C.C. Nitsche, The regularity of the trace for minimal surfaces. Annali della S. N. S. di Pisa, t. 3, 1976, p. 139-155. Zbl0331.53006MR402624
  12. [12] J.C.C. Nitsche, Stationary partioning of convex bodies. Arch. Rat. Mech. Anal. (to appear). Zbl0572.52005MR784101
  13. [13] B. Smyth, Stationary minimal surfaces with boundary on a simplex, Invent. Math. (to appear). Zbl0527.53005MR746536
  14. [14] M. Struwe, On a free boundary problem for minimal surfaces. Invent. Math., t. 75, 1984, p. 547-560. Zbl0537.35037MR735340
  15. [15] F. Tomi, A finiteness result in the free boundary value problem for minimal surfaces, preprint. Zbl0603.49028
  16. [16] N. Dauids, Minimal surfaces spanning closed manifolds and having prescribed topological position. Amer. J. Math., t. 64, 1942, p. 348-362. Zbl0063.01046MR6031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.