Heavy viable trajectories of controlled systems

Jean-Pierre Aubin; Halina Frankowska

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 5, page 371-395
  • ISSN: 0294-1449

How to cite

top

Aubin, Jean-Pierre, and Frankowska, Halina. "Heavy viable trajectories of controlled systems." Annales de l'I.H.P. Analyse non linéaire 2.5 (1985): 371-395. <http://eudml.org/doc/78102>.

@article{Aubin1985,
author = {Aubin, Jean-Pierre, Frankowska, Halina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {differentiable multifunctions; heavy viable trajectories},
language = {eng},
number = {5},
pages = {371-395},
publisher = {Gauthier-Villars},
title = {Heavy viable trajectories of controlled systems},
url = {http://eudml.org/doc/78102},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Aubin, Jean-Pierre
AU - Frankowska, Halina
TI - Heavy viable trajectories of controlled systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 5
SP - 371
EP - 395
LA - eng
KW - differentiable multifunctions; heavy viable trajectories
UR - http://eudml.org/doc/78102
ER -

References

top
  1. J.-P. Aubin [1981] a) Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. Advances in Mathematics. Supplementary Studies. Ed. L. Nachbin, Academic Press, p. 160-232. Zbl0484.47034MR634239
  2. J.-P. Aubin [1981] b) A dynamical, pure exchange economy with feedback pricing. J. Economic Behavior and Organizations, t. 2, p. 95-127. 
  3. J.-P. Aubin [1984] Lipschitz behavior of solutions to convex minimization problems. Math. Op. Res., t. 9, p. 87-111. Zbl0539.90085MR736641
  4. J.-P. Aubin and A. Cellina [1984] Differential inclusions. Springer-Verlag. Zbl0538.34007MR755330
  5. J.-P. Aubin and F.H. Clarke [1977] Monotone invariant solutions to differential inclusions. J. London Math. Soc., t. 16, p. 357-366. Zbl0405.34049MR486742
  6. J.-P. Aubin and I. Ekeland [1984] Applied nonlinear analysis. Wiley Interscience. Zbl0641.47066MR749753
  7. H. Brézis [1973] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam. Zbl0252.47055MR348562
  8. F.H. Clarke [1975] Generalized gradients and applications. Trans. A. M. S., t. 205, p. 247-262. Zbl0307.26012MR367131
  9. F.H. Clarke [1983] Optimization and nonsmooth analysis. Wiley Interscience. Zbl0582.49001MR709590
  10. B. Cornet and G. Haddad [1983] Théorèmes de viabilité pour les inclusions différentielles du second ordre. In Haddad's thesis, Université de Paris-Dauphine. 
  11. A.I. Dubovickii and A.M. Miljutin [1963] Extremum problems with constraints. Soviet Math., t. 4, p. 452-455. Zbl0133.05501
  12. I. Ekeland [1979] Éléments d'économie mathématique ; Hermann. Zbl0417.90002MR552942
  13. G. Haddad [1981] Monotone trajectories of differential inclusions and functional differential inclusions with memory. Israel J. Math., t. 39, p. 83-100. Zbl0462.34048MR617292
  14. S. Smale [1976] Exchange processes with price adjustements. J. Math. Econ., t. 3, p. 211-216. Zbl0366.90013MR452565
  15. E. Stacchetti [1983] Analysis of a dynamic decentralized exchange economy. Zbl0605.90033
  16. P.G. Williamson [1985] Palaeontological documentation of speciation in Cenezoic Molluscs from Turkana Basin. Nature, t. 293, p. 437. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.