The generalized Dirichlet problem for equations of Monge-Ampère type
Annales de l'I.H.P. Analyse non linéaire (1986)
- Volume: 3, Issue: 3, page 209-228
- ISSN: 0294-1449
Access Full Article
topHow to cite
topUrbas, John I. E.. "The generalized Dirichlet problem for equations of Monge-Ampère type." Annales de l'I.H.P. Analyse non linéaire 3.3 (1986): 209-228. <http://eudml.org/doc/78112>.
@article{Urbas1986,
author = {Urbas, John I. E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; uniqueness; convex solution; Dirichlet problem; equations of Monge-Ampère type},
language = {eng},
number = {3},
pages = {209-228},
publisher = {Gauthier-Villars},
title = {The generalized Dirichlet problem for equations of Monge-Ampère type},
url = {http://eudml.org/doc/78112},
volume = {3},
year = {1986},
}
TY - JOUR
AU - Urbas, John I. E.
TI - The generalized Dirichlet problem for equations of Monge-Ampère type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 3
SP - 209
EP - 228
LA - eng
KW - existence; uniqueness; convex solution; Dirichlet problem; equations of Monge-Ampère type
UR - http://eudml.org/doc/78112
ER -
References
top- [1] A.D. Aleksandrov, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955. Zbl0065.15102MR71041
- [2] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = φ(z1, ..., zn, z, x1, ..., xn), Vestnik Leningrad Univ., t. 13, 1958, p. 5-24, (Russian). Zbl0114.30202
- [3] I.Ya. Bakel'man, Generalized solutions of the Monge-Ampère equations, Dokl. Akad. Nauk SSSR, t. 114, 1957, p. 1143-1145, (Russian). Zbl0114.29602MR95481
- [4] I.Ya. Bakel'man, Theory of quasilinear elliptic equations, Sibirsk. Mat. Ž., t. 2, 1961, p. 179-186, (Russian). Zbl0100.30503MR126604
- [5] I.Ya. Bakel'man, The Dirichlet problem for the elliptic n-dimensional Monge-Ampère equations and related problems in the theory of quasilinear equations, Proceedings of Seminar on Monge-Ampère Equations and Related Topics, (Firenze1980), Instituto Nazionale di Alta Matematica, Roma, 1982, p. 1-78. Zbl0524.53039
- [6] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934. Zbl0008.07708MR344997JFM60.0673.01
- [7] H. Busemann, Convex surfaces, Interscience, New York, 1958. Zbl0196.55101MR105155
- [8] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equation, Comm. Pure Appl. Math., t. 37, 1984, p. 369-402. Zbl0598.35047MR739925
- [9] S.-Y. Cheng, S.-T. Yau, On the regularity of the Monge-Ampère equation det (∂2u/∂xi∂xj) = F(x, u), Comm. Pure Appl. Math., t. 30, 1977, p. 41-68. Zbl0347.35019MR437805
- [10] L.C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math., t. 35, 1982, p. 333-363. Zbl0469.35022MR649348
- [11] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math., t. 12, 1974, p. 73-86. Zbl0276.35038MR336532
- [12] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, Second Edition, 1983. Zbl0562.35001MR737190
- [13] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), t. 131, 1983, p. 72-79. Zbl0522.35028MR718679
- [14] N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR, t. 47, 1983, p. 75-108, (Russian). Zbl0578.35024MR688919
- [15] P.-L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math., t. 41, 1983, p. 1-44. Zbl0509.35036MR689131
- [16] P.-L. Lions, Sur les équations de Monge-Ampère II, Arch. Rational Mech. Anal. (to appear). Zbl0579.35027MR786541
- [17] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Noordhoff, Gröningen, 1964. Zbl0133.04902MR180763
- [18] A.V. Pogorelov, On the regularity of generalized solutions of the equation det (∂2u/∂xi∂xj) = φ(x1, ..., xn) > 0, Dokl. Akad. Nauk SSSR, t. 200, 1971, p. 543-547, (Russian). English translation in Soviet Math. Dokl., t. 12, 1971, p. 1436- 1440. Zbl0246.35014MR293227
- [19] A.V. Pogorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR, t. 201, 1971, p. 790-793, (Russian). English translation in Soviet Math. Dokl, t. 12, 1971, p. 1727-1731. Zbl0238.35071MR293228
- [20] A.V. Pogorelov, The Minkowski multidimensional problem, J. Wiley, New York, 1978. Zbl0387.53023
- [21] J. Rauch, B.A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math., t. 7, 1977, p. 345-364. Zbl0367.35025MR454331
- [22] I.Kh. Sabitov, The regularity of conver regions with a metric that is regular in the Hölmer classes, Sibirsk. Mat. Ž., t. 17, 1976, p.907-915, (Russian). English translation in Siberian Math. J., t. 17, 1976, p. 681-687. Zbl0356.53017MR425854
- [23] F. Schulz, Über die Differentialgleichung rt - s2 = f und das Weylsche Einbettungsproblem, Math. Z., t. 179, 1982, p. 1-10. Zbl0535.35021MR643043
- [24] N.S. Trudinger, Fully nonlinear, uniformly elliptic equations under natrual structure conditions, Trans. Amer. Math. Soc., t. 278, 1983, p. 751–770. Zbl0518.35036MR701522
- [25] N.S. Trudinger, J.I.E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., t. 28, 1983, p. 217–231. Zbl0524.35047MR729009
- [26] N.S. Trudinger, J.I.E. Urbas, On second derivative estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc., t. 30, 1984, p. 321–334. Zbl0557.35054MR766792
- [27] J.I.E. Urbas, Elliptic equations of Monge-Ampère type, Thesis, Australian National University, 1984.
- [28] J.I.E. Urbas, The equation of prescribed Gauss curvature without boundary conditions, J. Differential Geometry, t. 20, 1984, p. 311-327. Zbl0566.53013MR788283
- [29] J.I.E. Urbas, Global Hölder estimates for equation of Monge-Ampère type, (to appear). Zbl0674.35026MR918234
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.