The generalized Dirichlet problem for equations of Monge-Ampère type

John I. E. Urbas

Annales de l'I.H.P. Analyse non linéaire (1986)

  • Volume: 3, Issue: 3, page 209-228
  • ISSN: 0294-1449

How to cite

top

Urbas, John I. E.. "The generalized Dirichlet problem for equations of Monge-Ampère type." Annales de l'I.H.P. Analyse non linéaire 3.3 (1986): 209-228. <http://eudml.org/doc/78112>.

@article{Urbas1986,
author = {Urbas, John I. E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; uniqueness; convex solution; Dirichlet problem; equations of Monge-Ampère type},
language = {eng},
number = {3},
pages = {209-228},
publisher = {Gauthier-Villars},
title = {The generalized Dirichlet problem for equations of Monge-Ampère type},
url = {http://eudml.org/doc/78112},
volume = {3},
year = {1986},
}

TY - JOUR
AU - Urbas, John I. E.
TI - The generalized Dirichlet problem for equations of Monge-Ampère type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 3
SP - 209
EP - 228
LA - eng
KW - existence; uniqueness; convex solution; Dirichlet problem; equations of Monge-Ampère type
UR - http://eudml.org/doc/78112
ER -

References

top
  1. [1] A.D. Aleksandrov, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955. Zbl0065.15102MR71041
  2. [2] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = φ(z1, ..., zn, z, x1, ..., xn), Vestnik Leningrad Univ., t. 13, 1958, p. 5-24, (Russian). Zbl0114.30202
  3. [3] I.Ya. Bakel'man, Generalized solutions of the Monge-Ampère equations, Dokl. Akad. Nauk SSSR, t. 114, 1957, p. 1143-1145, (Russian). Zbl0114.29602MR95481
  4. [4] I.Ya. Bakel'man, Theory of quasilinear elliptic equations, Sibirsk. Mat. Ž., t. 2, 1961, p. 179-186, (Russian). Zbl0100.30503MR126604
  5. [5] I.Ya. Bakel'man, The Dirichlet problem for the elliptic n-dimensional Monge-Ampère equations and related problems in the theory of quasilinear equations, Proceedings of Seminar on Monge-Ampère Equations and Related Topics, (Firenze1980), Instituto Nazionale di Alta Matematica, Roma, 1982, p. 1-78. Zbl0524.53039
  6. [6] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934. Zbl0008.07708MR344997JFM60.0673.01
  7. [7] H. Busemann, Convex surfaces, Interscience, New York, 1958. Zbl0196.55101MR105155
  8. [8] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equation, Comm. Pure Appl. Math., t. 37, 1984, p. 369-402. Zbl0598.35047MR739925
  9. [9] S.-Y. Cheng, S.-T. Yau, On the regularity of the Monge-Ampère equation det (∂2u/∂xi∂xj) = F(x, u), Comm. Pure Appl. Math., t. 30, 1977, p. 41-68. Zbl0347.35019MR437805
  10. [10] L.C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math., t. 35, 1982, p. 333-363. Zbl0469.35022MR649348
  11. [11] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math., t. 12, 1974, p. 73-86. Zbl0276.35038MR336532
  12. [12] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, Second Edition, 1983. Zbl0562.35001MR737190
  13. [13] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), t. 131, 1983, p. 72-79. Zbl0522.35028MR718679
  14. [14] N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR, t. 47, 1983, p. 75-108, (Russian). Zbl0578.35024MR688919
  15. [15] P.-L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math., t. 41, 1983, p. 1-44. Zbl0509.35036MR689131
  16. [16] P.-L. Lions, Sur les équations de Monge-Ampère II, Arch. Rational Mech. Anal. (to appear). Zbl0579.35027MR786541
  17. [17] A.V. Pogorelov, Monge-Ampère equations of elliptic type, Noordhoff, Gröningen, 1964. Zbl0133.04902MR180763
  18. [18] A.V. Pogorelov, On the regularity of generalized solutions of the equation det (∂2u/∂xi∂xj) = φ(x1, ..., xn) &gt; 0, Dokl. Akad. Nauk SSSR, t. 200, 1971, p. 543-547, (Russian). English translation in Soviet Math. Dokl., t. 12, 1971, p. 1436- 1440. Zbl0246.35014MR293227
  19. [19] A.V. Pogorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR, t. 201, 1971, p. 790-793, (Russian). English translation in Soviet Math. Dokl, t. 12, 1971, p. 1727-1731. Zbl0238.35071MR293228
  20. [20] A.V. Pogorelov, The Minkowski multidimensional problem, J. Wiley, New York, 1978. Zbl0387.53023
  21. [21] J. Rauch, B.A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math., t. 7, 1977, p. 345-364. Zbl0367.35025MR454331
  22. [22] I.Kh. Sabitov, The regularity of conver regions with a metric that is regular in the Hölmer classes, Sibirsk. Mat. Ž., t. 17, 1976, p.907-915, (Russian). English translation in Siberian Math. J., t. 17, 1976, p. 681-687. Zbl0356.53017MR425854
  23. [23] F. Schulz, Über die Differentialgleichung rt - s2 = f und das Weylsche Einbettungsproblem, Math. Z., t. 179, 1982, p. 1-10. Zbl0535.35021MR643043
  24. [24] N.S. Trudinger, Fully nonlinear, uniformly elliptic equations under natrual structure conditions, Trans. Amer. Math. Soc., t. 278, 1983, p. 751–770. Zbl0518.35036MR701522
  25. [25] N.S. Trudinger, J.I.E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc., t. 28, 1983, p. 217–231. Zbl0524.35047MR729009
  26. [26] N.S. Trudinger, J.I.E. Urbas, On second derivative estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc., t. 30, 1984, p. 321–334. Zbl0557.35054MR766792
  27. [27] J.I.E. Urbas, Elliptic equations of Monge-Ampère type, Thesis, Australian National University, 1984. 
  28. [28] J.I.E. Urbas, The equation of prescribed Gauss curvature without boundary conditions, J. Differential Geometry, t. 20, 1984, p. 311-327. Zbl0566.53013MR788283
  29. [29] J.I.E. Urbas, Global Hölder estimates for equation of Monge-Ampère type, (to appear). Zbl0674.35026MR918234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.