A finiteness result in the free boundary value problem for minimal surfaces

Friedrich Tomi

Annales de l'I.H.P. Analyse non linéaire (1986)

  • Volume: 3, Issue: 4, page 331-343
  • ISSN: 0294-1449

How to cite

top

Tomi, Friedrich. "A finiteness result in the free boundary value problem for minimal surfaces." Annales de l'I.H.P. Analyse non linéaire 3.4 (1986): 331-343. <http://eudml.org/doc/78117>.

@article{Tomi1986,
author = {Tomi, Friedrich},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimal surfaces; free boundary problem; minimizing maps; disc type solutions; H-convexity},
language = {eng},
number = {4},
pages = {331-343},
publisher = {Gauthier-Villars},
title = {A finiteness result in the free boundary value problem for minimal surfaces},
url = {http://eudml.org/doc/78117},
volume = {3},
year = {1986},
}

TY - JOUR
AU - Tomi, Friedrich
TI - A finiteness result in the free boundary value problem for minimal surfaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 4
SP - 331
EP - 343
LA - eng
KW - minimal surfaces; free boundary problem; minimizing maps; disc type solutions; H-convexity
UR - http://eudml.org/doc/78117
ER -

References

top
  1. [1] P. Alexandroff, H. Hopf, Topologie. Erster Band., Springer, Berlin, 1935. Zbl61.0602.07
  2. [2] W. Blaschke, Vorlesungen über Differentialgeometrie. I. Elementare Differential geometrie., Springer, Berlin, 1945. Zbl0063.00453
  3. [3] R. Courant, Dirichlet's principle, conformal mapping and minimal surfaces. Interscience Publ., New York, 1950. Zbl0040.34603MR36317
  4. [4] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Zbl0175.40403
  5. Krümmung und Anwendungen auf die Kapillaritätstheorie. II. Freie Ränder. Arch. Rat. Mech. Analysis, t. 39, 1970, p. 275-293. MR273524
  6. [5] S. Hildebrandt, Ein einfacher Beweis für die Regularität der Lösungen gewisser zweidimensionaler Variationsprobleme unter freien Randbedingungen. Math. Ann., t. 194, 1971, p. 316-331. Zbl0213.38404MR291927
  7. [6] W. Jäger, Behavior of minimal surfaces with free boundaries. Comm. Pure Appl. Math., t. 23, 1970, p. 803-818. Zbl0204.11601MR266067
  8. [7] W.H. Meeks, S.T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math., t. 112, 1980, p. 441-484. Zbl0458.57007MR595203
  9. [8] J.C.C. Nitsche, Vorlesungen über Minimalflächen. Springer, Berlin-Heidelberg- New York, 1975. Zbl0319.53003MR448224
  10. [9] H.W. Seifert, Threllfall, Lehrbuch der Topologie. Chelsea Publ. Co., New York. 
  11. [10] F. Tomi, On the local uniqueness of the problem of least area. Archive Rat. Mech. Analysis, t. 52, 1973, p. 312-318. Zbl0277.49016MR346639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.