On a quasi-periodic Hopf bifurcation

B. L. J. Braaksma; H. W. Broer

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 2, page 115-168
  • ISSN: 0294-1449

How to cite

top

Braaksma, B. L. J., and Broer, H. W.. "On a quasi-periodic Hopf bifurcation." Annales de l'I.H.P. Analyse non linéaire 4.2 (1987): 115-168. <http://eudml.org/doc/78127>.

@article{Braaksma1987,
author = {Braaksma, B. L. J., Broer, H. W.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-periodic Hopf bifurcations; quasi-periodically forced oscillator; Stoker's problem for small damping},
language = {eng},
number = {2},
pages = {115-168},
publisher = {Gauthier-Villars},
title = {On a quasi-periodic Hopf bifurcation},
url = {http://eudml.org/doc/78127},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Braaksma, B. L. J.
AU - Broer, H. W.
TI - On a quasi-periodic Hopf bifurcation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 2
SP - 115
EP - 168
LA - eng
KW - quasi-periodic Hopf bifurcations; quasi-periodically forced oscillator; Stoker's problem for small damping
UR - http://eudml.org/doc/78127
ER -

References

top
  1. [Ar1] V.I. Arnol'd, Proof of a theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Uspehi Math. Nauk., t. 18, 1963, p. 13-40. Russ. Math. Surveys, t. 18, 5, 1963, p. 9-36. Zbl0129.16606MR163025
  2. [Ar2] V.I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations. Springer Verlag, 1983. Zbl0507.34003MR695786
  3. [Be] E.G. Belaga, On the reducibility of a system of ordinary differential equations in a neighborhood of a conditionally periodic motion. Sov. Math. Dokl., t. 143, 2, 1962, p. 250-255. Zbl0117.30503MR138845
  4. [Bo] N.N. Bogoljubov, On quasi-periodic solutions in nonlinear problems of mechanics. Proceedings of the First Mathematical Summer School, Pt. I. Naukova Dumka, Kiev, 1964, p. 11-101. MR209571
  5. [BN] H. Bohr, O. Neugebauer, Ueber lineare Differentialgleichungen mit konstanten Koeffizienten und fast-periodischen rechter Seite. Nachr. Akad. Wiss. Göttingen, Math. phys. Kl., 1962, p. 8-22. Zbl52.0464.01JFM52.0464.01
  6. [BB] B.L.J. Braaksma, H.W. Broer, Quasi-periodic flow near a codimension one singularity of a divergence free vectorfield in dimension four. In Bifurcation, Théorie Ergodique et Applications, 22-26 juin 1981. Asterisque, t. 98-99, 1982, p. 74-142. Zbl0517.58033MR724444
  7. [Br1] H.W. Broer, Formal normal form theorems for singularities of vector fields and some consequences for bifurcations in the volume preserving case. In Dynamical Systems and Turbulence, Warwick, 1980 (eds. D. Rand and L.-S. Young). Springer L. N. M., t. 898, 1981, p. 54-74. Zbl0504.58031MR654883
  8. [Br2] H.W. Broer, Quasi-periodicity in local bifurcation theory. In Bifurcation Theory, Mechanics and Physics (eds. C. P. Bruter, A. Aragnol, A. Lichnérowicz). Reidel, 1983, p. 177-208. Zbl0577.34037MR726251
  9. [Ca] J. Carr, Applications of Centre Manifold Theory. Springer Applied Math. Sciences, t. 35, 1981. Zbl0464.58001MR635782
  10. [Ch] A. Chenciner, Bifurcations de points fixes elliptiques, I. Courbes invariantes. Publ. Math. I. H. E. S., t. 61, 1985, p. 67-127. Zbl0566.58025MR783349
  11. [CI] A. Chenciner, G. Iooss, Bifurcation de tores invariants. Arch. Rat. Mech. An., t. 69, 2, 1979, p. 109-198. Zbl0405.58033MR521266
  12. [CH] S.-N. Chow, J.K. Hale, Methods of Bifurcation Theory. Springer, 1982. Zbl0487.47039MR660633
  13. [Fl] D. Flockerzi, Generalized bifurcation of higher dimensional tori. J. Diff. Eq., t. 55, 1984, p. 346-367. Zbl0511.58028MR766128
  14. [Fr 1] M. Friedman, On Almost Periodic Solutions of Nonlinear Ordinary Differential Equations. Ph. D. ThesisNew York University, 1965. 
  15. [Fr2] M. Friedman, Quasi-periodic solutions of nonlinear ordinary differential equations with small damping. Bull. Am. Math. Soc., t. 73, 1967, p. 460-464. Zbl0189.39104MR229911
  16. [Ha1] J.K. Hale, Integral manifolds of perturbed differential systems. Ann. Math., t. 73, 1961, p. 496-531. Zbl0163.32804MR123786
  17. [Ha2] J.K. Hale, Ordinary Differential Equations. Wiley and Sons, 1969. Krieger, 1980. Zbl0186.40901MR419901
  18. [Hau] F. Hausdorff, Set Theory (2nd ed.). Chelsea Publishing Company, 1962. Zbl0488.04001MR141601
  19. [HPS] M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds. Springer L. N. M., t. 583, 1977. Zbl0355.58009MR501173
  20. [Hö] L. Hörmander, On the division of distributions by polynomials. Ark. Mat., t. 3, 1958, p. 555-568. Zbl0131.11903MR124734
  21. [Io] G. Iooss, Bifurcation of Maps and Applications. North Holland, 1979. Zbl0408.58019MR531030
  22. [Ma] I.G. Malkin, Some Problems in the Theory of Nonlinear Oscillations. State Publishing House, Moscow, 1956. 
  23. [MM] J.E. Marsden, M. Mccracken, The Hopf Bifurcation and its Applications. Springer, 1976. Zbl0346.58007MR494309
  24. [VdM] J.C. Van Der Meer, The Hamiltonian Hopf Bifurcation. Springer L. N. M., t. 1160, 1985. Zbl0585.58019MR815106
  25. [Mo1] J.K. Moser, Combination tones for Duffing's equation. Comm. Pure Appl. Math., t. 18, 1965, p. 167-181. Zbl0136.08303MR179430
  26. [Mo2] J.K. Moser, Convergent series expansions for quasi-periodic motions. Math. Ann., t. 169, 1967, p. 136-176. Zbl0179.41102MR208078
  27. [Po] H. Poincaré, Thèse. In Œuvres 1, 1879, LIX-CXXIX, Gauthier-Villars, 1928. 
  28. [Pö] J. Pöschel, Integrability of Hamiltonian systems on Cantor sets. Comm. Pure Appl. Math., t. 35, 1982, p. 653-696. Zbl0542.58015MR668410
  29. [Se] G.R. Sell, Bifurcation of higher dimensional tori. Arch. Rat. Mech. An., t. 69, 3, 1979, p. 199-230. Zbl0405.58032MR522524
  30. [Sij] J. Sijbrand, Studies in Nonlinear Stability and Bifurcation Theory, Ph. D. Thesis University of Utrecht, 1981. 
  31. [Stei] E. Stein, Singular Integrals and Differentiability-Properties of Functions. Princeton, 1970. Zbl0207.13501MR290095
  32. [Ster] S. Sternberg, On the structure of local homeomorphisms of Euclidean n-spaces, II. Am. J. of Math., t. 80, 1958, p. 623-631. Zbl0083.31406MR96854
  33. [Sto] J.J. Stoker, Nonlinear Vibrations. Interscience New York, 1950. MR34932
  34. [Str] S. J. van Strien, Center manifolds are not C∞. Math. Z., t. 116, 1979, p. 143-145. Zbl0403.58021MR525618
  35. [Ta] F. Takens, Singularities of vector fields. Publ. Math. I. H. E. S., t. 43, 1974, p. 48-100. Zbl0279.58009MR339292
  36. [Wh] H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc., t. 36, 1934, p. 63-89. Zbl0008.24902MR1501735JFM60.0217.01
  37. [Ze] E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I. Comm. Pure Appl. Math., t. 28, 1975, p. 91-140. Zbl0309.58006MR380867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.