Periodic solutions for a class of Lorenz-lagrangian systems
Annales de l'I.H.P. Analyse non linéaire (1988)
- Volume: 5, Issue: 3, page 211-220
- ISSN: 0294-1449
Access Full Article
topHow to cite
topToland, J. F.. "Periodic solutions for a class of Lorenz-lagrangian systems." Annales de l'I.H.P. Analyse non linéaire 5.3 (1988): 211-220. <http://eudml.org/doc/78151>.
@article{Toland1988,
author = {Toland, J. F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamiltonian systems; Lorentz-Lagrange systems; real symmetric matrix},
language = {eng},
number = {3},
pages = {211-220},
publisher = {Gauthier-Villars},
title = {Periodic solutions for a class of Lorenz-lagrangian systems},
url = {http://eudml.org/doc/78151},
volume = {5},
year = {1988},
}
TY - JOUR
AU - Toland, J. F.
TI - Periodic solutions for a class of Lorenz-lagrangian systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 3
SP - 211
EP - 220
LA - eng
KW - Hamiltonian systems; Lorentz-Lagrange systems; real symmetric matrix
UR - http://eudml.org/doc/78151
ER -
References
top- [1] H. Hofer and J. Toland, On the Existence of Homoclinic Heteroclinic and Periodic Solutions for a Class of Indefinite Hamiltonian Systems, Math. Annolen, Vol. 268, 1984, pp. 387-403. Zbl0569.70017MR751737
- [2] V.V. Kozlov, Calculus of Variations in the Large and Classical Mechanics, Russ. Math. Surveys, Vol. 40, 1985, pp. 37-71. Zbl0579.70020MR786086
- [3] J.F. Toland, Hamiltonian Systems Withmonotone Trajectories, Proc. Centre Math. Anal., Vol. 8, 1964, pp. 51-63. Zbl0622.58013
- [4] J.F. Toland, An Index for Hamiltonian Systems with a Natural Order Structure. In Nonlinear Functional Analysis and its Applications, D. Riedel, 1986, pp. 147-161. Zbl0606.58023MR852574
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.