Interior curvature estimates for hypersurfaces of prescribed mean curvature

Klaus Ecker; Gerhard Huisken

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 4, page 251-260
  • ISSN: 0294-1449

How to cite

top

Ecker, Klaus, and Huisken, Gerhard. "Interior curvature estimates for hypersurfaces of prescribed mean curvature." Annales de l'I.H.P. Analyse non linéaire 6.4 (1989): 251-260. <http://eudml.org/doc/78178>.

@article{Ecker1989,
author = {Ecker, Klaus, Huisken, Gerhard},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {curvature estimates; prescribed mean curvature},
language = {eng},
number = {4},
pages = {251-260},
publisher = {Gauthier-Villars},
title = {Interior curvature estimates for hypersurfaces of prescribed mean curvature},
url = {http://eudml.org/doc/78178},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Ecker, Klaus
AU - Huisken, Gerhard
TI - Interior curvature estimates for hypersurfaces of prescribed mean curvature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 4
SP - 251
EP - 260
LA - eng
KW - curvature estimates; prescribed mean curvature
UR - http://eudml.org/doc/78178
ER -

References

top
  1. [1] E. Bombieri, E. De Giorgi and M. Miranda, Una maggiorazione apriori relative alle ipersuperfici minimali non parametriche, Arch. Rat. Mech. Anal., Vol. 32, 1969, pp. 255-269. Zbl0184.32803
  2. [2] L. Caffarelli, L. Nirenberg and J. Spruck, On a Form of Bernstein's Theorem, preprint (to appear). Zbl0668.35028MR864651
  3. [3] P. Concus and R. Finn, On Capillary Free Surfaces in a Gravitational Field, Acta Math., Vol. 132, 1974, pp. 207-223. Zbl0382.76005MR670443
  4. [4] K. Ecker, An Interior Gradient Bound for Solutions of Equations of Capillary Type, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 137-151. MR816617
  5. [5] K. Ecker and G. Huisken, A Bernstein Result for Minimal Graphs of Controlled Growth, J. Diff. Geom. (to appear). Zbl0696.53002MR1037408
  6. [6] R. Finn, On Equations of Minimal Surface Type, Ann. of Math. (2), Vol. 60, 1954, pp. 397-415. Zbl0058.32501MR66533
  7. [7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd edition), Springer-Verlag, Berlin-Heidelberg, New York, 1983. Zbl0562.35001MR737190
  8. [8] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl, Vol. II, 1952, pp. 51-56. Zbl0048.15401MR54182
  9. [9] E. Heinz, Interior Gradient Estimates for Surfaces z = F (x, y) with Prescribed Mean Curvature, J. Diff. Geom., Vol. 5, 1971, pp. 149-157. Zbl0212.44001MR289940
  10. [10] N. Korevaar, An Easy Proof of the Interior Gradient Bound for Solutions to the Prescribed Mean Curvature Equation, Proc. Symp. Pure Math., Vol. 45, 1986, Part 2. Zbl0599.35046MR843597
  11. [11] O.A. Ladyzhenskaya and N.N. Ural'tseva, Local Estimates for Gradients of Solutions of Nonuniformly Elliptic and Parabolic Equations, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 677-703. Zbl0193.07202MR265745
  12. [12] J. Michael and L. Simon, Sobolev and Mean Value Inequalities on Generalized Submanifolds of R", Comm. Pure Appl. Math., Vol. 26, 1973, pp. 361-379. Zbl0256.53006MR344978
  13. [13] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Problem for Elliptic Differential Equations, Comm. Pure Appl. Math., Vol. 13, 1960, pp. 457- 468. Zbl0111.09301MR170091
  14. [14] R. Schoen, L. Simon and S.T. Yau, Curvature Estimates for Minimal Hypersurfaces, Acta Math., Vol. 134, 1975, pp. 275-288. Zbl0323.53039MR423263
  15. [15] L. Simon and J. Spruck, Existence and Regularity of a Capillary Surface with Prescribed Contact Angle, Arch. Rat. Mech. Anal., Vol. 61, 1976, pp. 19-34. Zbl0361.35014MR487724
  16. [16] N.S. Trudinger, A New Proof of the Interior Gradient Bound for the Minimal Surface Equation in n-Dimensions, Proc. Nat. Acad. Sci. U.S.A., Vol. B69B, 1972. pp. 821-823. Zbl0231.53007MR296832
  17. [17] N.S. Trudinger, Gradient Estimates and Mean Curvature, Math. Z., Vol. 131, 1973. pp. 165-175. Zbl0253.53003MR324187
  18. [18] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. I (to appear). Zbl0202.20601MR305255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.