Interior curvature estimates for hypersurfaces of prescribed mean curvature
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: 6, Issue: 4, page 251-260
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEcker, Klaus, and Huisken, Gerhard. "Interior curvature estimates for hypersurfaces of prescribed mean curvature." Annales de l'I.H.P. Analyse non linéaire 6.4 (1989): 251-260. <http://eudml.org/doc/78178>.
@article{Ecker1989,
author = {Ecker, Klaus, Huisken, Gerhard},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {curvature estimates; prescribed mean curvature},
language = {eng},
number = {4},
pages = {251-260},
publisher = {Gauthier-Villars},
title = {Interior curvature estimates for hypersurfaces of prescribed mean curvature},
url = {http://eudml.org/doc/78178},
volume = {6},
year = {1989},
}
TY - JOUR
AU - Ecker, Klaus
AU - Huisken, Gerhard
TI - Interior curvature estimates for hypersurfaces of prescribed mean curvature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 4
SP - 251
EP - 260
LA - eng
KW - curvature estimates; prescribed mean curvature
UR - http://eudml.org/doc/78178
ER -
References
top- [1] E. Bombieri, E. De Giorgi and M. Miranda, Una maggiorazione apriori relative alle ipersuperfici minimali non parametriche, Arch. Rat. Mech. Anal., Vol. 32, 1969, pp. 255-269. Zbl0184.32803
- [2] L. Caffarelli, L. Nirenberg and J. Spruck, On a Form of Bernstein's Theorem, preprint (to appear). Zbl0668.35028MR864651
- [3] P. Concus and R. Finn, On Capillary Free Surfaces in a Gravitational Field, Acta Math., Vol. 132, 1974, pp. 207-223. Zbl0382.76005MR670443
- [4] K. Ecker, An Interior Gradient Bound for Solutions of Equations of Capillary Type, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 137-151. MR816617
- [5] K. Ecker and G. Huisken, A Bernstein Result for Minimal Graphs of Controlled Growth, J. Diff. Geom. (to appear). Zbl0696.53002MR1037408
- [6] R. Finn, On Equations of Minimal Surface Type, Ann. of Math. (2), Vol. 60, 1954, pp. 397-415. Zbl0058.32501MR66533
- [7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd edition), Springer-Verlag, Berlin-Heidelberg, New York, 1983. Zbl0562.35001MR737190
- [8] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl, Vol. II, 1952, pp. 51-56. Zbl0048.15401MR54182
- [9] E. Heinz, Interior Gradient Estimates for Surfaces z = F (x, y) with Prescribed Mean Curvature, J. Diff. Geom., Vol. 5, 1971, pp. 149-157. Zbl0212.44001MR289940
- [10] N. Korevaar, An Easy Proof of the Interior Gradient Bound for Solutions to the Prescribed Mean Curvature Equation, Proc. Symp. Pure Math., Vol. 45, 1986, Part 2. Zbl0599.35046MR843597
- [11] O.A. Ladyzhenskaya and N.N. Ural'tseva, Local Estimates for Gradients of Solutions of Nonuniformly Elliptic and Parabolic Equations, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 677-703. Zbl0193.07202MR265745
- [12] J. Michael and L. Simon, Sobolev and Mean Value Inequalities on Generalized Submanifolds of R", Comm. Pure Appl. Math., Vol. 26, 1973, pp. 361-379. Zbl0256.53006MR344978
- [13] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Problem for Elliptic Differential Equations, Comm. Pure Appl. Math., Vol. 13, 1960, pp. 457- 468. Zbl0111.09301MR170091
- [14] R. Schoen, L. Simon and S.T. Yau, Curvature Estimates for Minimal Hypersurfaces, Acta Math., Vol. 134, 1975, pp. 275-288. Zbl0323.53039MR423263
- [15] L. Simon and J. Spruck, Existence and Regularity of a Capillary Surface with Prescribed Contact Angle, Arch. Rat. Mech. Anal., Vol. 61, 1976, pp. 19-34. Zbl0361.35014MR487724
- [16] N.S. Trudinger, A New Proof of the Interior Gradient Bound for the Minimal Surface Equation in n-Dimensions, Proc. Nat. Acad. Sci. U.S.A., Vol. B69B, 1972. pp. 821-823. Zbl0231.53007MR296832
- [17] N.S. Trudinger, Gradient Estimates and Mean Curvature, Math. Z., Vol. 131, 1973. pp. 165-175. Zbl0253.53003MR324187
- [18] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. I (to appear). Zbl0202.20601MR305255
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.