Univalent solutions of elliptic systems of Heinz-Lewy type

Friedmar Schulz

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 5, page 347-361
  • ISSN: 0294-1449

How to cite

top

Schulz, Friedmar. "Univalent solutions of elliptic systems of Heinz-Lewy type." Annales de l'I.H.P. Analyse non linéaire 6.5 (1989): 347-361. <http://eudml.org/doc/78183>.

@article{Schulz1989,
author = {Schulz, Friedmar},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {univalent mappings; Hölder continuous; linear differential inequality; non-vanishing of the Jacobian; one-to-one mappings},
language = {eng},
number = {5},
pages = {347-361},
publisher = {Gauthier-Villars},
title = {Univalent solutions of elliptic systems of Heinz-Lewy type},
url = {http://eudml.org/doc/78183},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Schulz, Friedmar
TI - Univalent solutions of elliptic systems of Heinz-Lewy type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 5
SP - 347
EP - 361
LA - eng
KW - univalent mappings; Hölder continuous; linear differential inequality; non-vanishing of the Jacobian; one-to-one mappings
UR - http://eudml.org/doc/78183
ER -

References

top
  1. [1] P.W. Berg, On Univalent Mappings by Solutions of Linear Elliptic Partial Differential Equations, Trans. Amer. Math. Soc., Vol. 84, 1957, pp. 310-318. Zbl0079.29901MR83657
  2. [2] S. Campanato, Equazioni Ellittiche del II0 Ordine e Spazi L(2,λ), Ann. Mat. Pura Appl., IV. Ser., Vol. 69, 1965, pp. 321-381. Zbl0145.36603MR192168
  3. [3] S. Campanato, Sistemi Ellittici in Forma Divergenza. Regolarità all'Interno. Quaderni, Scuola Normale Superiore, Pisa, 1980. Zbl0453.35026MR668196
  4. [4] T. Carleman, Sur les Systèmes Linéaires aux Dérivées Partielles du Premier Ordre à Deux Variables, C. R. Acad. Sci. Paris, Vol. 197, 1933, pp. 471-474. Zbl0007.16202JFM59.0469.03
  5. [5] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Studies, Vol. 105, Princeton University Press, Princeton, N.J., 1983. Zbl0516.49003MR717034
  6. [6] R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, New York, London, 1950. Zbl0040.34603MR36317
  7. [7] P. Hartman and A. Wintner, On the Local Behavior of Solutions of Non-Parabolic Partial Differential Equations, Am. J. Math., Vol. 75, 1953, pp. 449-476. Zbl0052.32201MR58082
  8. [8] E. Heinz, Über gewisse elliptische Systeme von Differentialgleichungen zweiter Ordnung mit Anwendung auf die Monge-Ampèresche Gleichung, Math. Ann., Vol. 131, 1956, pp. 411-428. Zbl0072.31103MR123809
  9. [9] E. Heinz, On Certain Nonlinear Elliptic Differential Equations and Univalent Mappings, J. Anal. Math., Vol. 5, 1956/1957, pp. 197-272. Zbl0085.08701MR136852
  10. [10] E. Heinz, On Elliptic Monge-Ampère Equations and Weyl's Embedding Problem, J. Anal. Math., Vol. 7, 1959, pp. 1-52. Zbl0152.30901MR111943
  11. [11] E. Heinz, Neue a-priori-Abschätzungen für den Ortsvektor einer Fläche positiver Gausscher Krümmung durch ihr Linienelement, Math. Z., Vol. 74, 1960, pp. 129- 157. Zbl0096.36601MR116294
  12. [12] E. Heinz, Interior Estimates for Solutions of Elliptic Monge-Ampère Equations, in Partial Differential Equations, Proceedings of Symposia in Pure Mathematics, Vol. IV, Berkeley, CA, 1960, pp. 149-155, American Mathematical Society, Providence, R.I., 1961. Zbl0192.20001MR157100
  13. [13] E. Heinz, Existence Theorems for One-To-One Mappings Associated with Elliptic Systems of Second Order I, J. Anal. Math., Vol. 15, 1965, pp. 325-352. Zbl0137.07202MR183966
  14. [14] E. Heinz, Existence Theorems for One-To-One Mappings Associated with Elliptic Systems of Second Order II, J. Anal. Math., Vol. 17, 1966, pp. 145-184. Zbl0144.14901MR217743
  15. [15] E. Heinz, Über das Nichtverschwinden der Funktionaldeterminante bei einer Klasse eineindeutiger Abbildungen, Math. Z., Vol. 105, 1968, pp. 87-89. Zbl0159.40203MR226196
  16. [16] E. Heinz, A-priori-Abschätzungen für isometrische Einbettungen zweidimensionaler Riemannscher Mannigfaltigkeiten in drei-dimensionale Riemannsche Räume, Math. Z., Vol. 100, 1967, pp. 1-16. Zbl0158.40105MR220222
  17. [17] E. Heinz, Zur Abschätzung der Funktionaldeterminante bei einer Klasse topologischer Abbildungen, Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl., 1968, pp. 183-197. Zbl0165.44802MR246236
  18. [18] J. Jost, Univalency of Harmonic Mappings Between Surfaces, J. Reine Angew. Math., Vol. 324, 1981, pp. 141-153. Zbl0453.53036MR614521
  19. [19] J. Jost and R. Schoen, On the Existence of Harmonic Diffeomorphisms Between Surfaces, Invent. Math., Vol. 66, 1982, pp. 353-359. Zbl0488.58009MR656629
  20. [20] H. Lewy, On the Non-Vanishing of the Jacobian in Certain One-To-One Mappings, Bull. Am. Math. Soc., Vol. 42, 1936, pp. 689-692. Zbl0015.15903
  21. [21] H. Lewy, A priori Limitations for Solutions of Monge-Ampère Equations. II, Trans. Am. Math. Soc., Vol. 41, 1937, pp. 365-374. Zbl0017.21101MR1501906
  22. [22] F. Schulz, Regularity of Convex Surfaces (to appear). MR80325

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.