The Stefan problem in heterogeneous media

Tomáš Roubíček

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 6, page 481-501
  • ISSN: 0294-1449

How to cite

top

Roubíček, Tomáš. "The Stefan problem in heterogeneous media." Annales de l'I.H.P. Analyse non linéaire 6.6 (1989): 481-501. <http://eudml.org/doc/78188>.

@article{Roubíček1989,
author = {Roubíček, Tomáš},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Stefan problem; heterogeneous media},
language = {eng},
number = {6},
pages = {481-501},
publisher = {Gauthier-Villars},
title = {The Stefan problem in heterogeneous media},
url = {http://eudml.org/doc/78188},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Roubíček, Tomáš
TI - The Stefan problem in heterogeneous media
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 6
SP - 481
EP - 501
LA - eng
KW - Stefan problem; heterogeneous media
UR - http://eudml.org/doc/78188
ER -

References

top
  1. [1] J.K. Cannon and E. Dibenedetto, On tne Existence of Weak Solutions to an n-Dimensional Stefan Problem with Nonlinear Boundary Conditions, S.I.A.M. J. Math. Anal., Vol. 11, 1980, pp. 632-645. Zbl0459.35090MR579555
  2. 2] A. Friedman, The Stefan Problem in Several Space Variables, Trans. Amer. Math. Soc., Vol. 133, 1968, pp. 51-87. Zbl0162.41903MR227625
  3. 3] S. Kamenomostskaya, On the Stefan Problem (in Russian), Mat. Sb., Vol. 53, 1961, pp. 488-514. Zbl0102.09301
  4. 4] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  5. 5] E. Magenes, C. Verdi and A. Visintin, Semigroup Approach to the Stefan Problem with Nonlinear Flux, Atti Acc. Lincei Rend. fis., S. VIII, Vol. 75, 1983, pp. 24-33. Zbl0562.35089MR780804
  6. [6] M. Niezgódka and I. Pawłow, A Generalized Stefan Problem in Several Space Variables, Appl. Math. Optim., Vol. 9, 1983, pp. 193-224. Zbl0519.35079MR687720
  7. [7] I. Pawłow, A Variational Inequality Approach to Generalized Two-Phase Stefan Problem in Several Space Variables, Ann. Matem. Pura et Applicata, Vol. 131, 1982, pp. 333-373. Zbl0506.35061MR681571
  8. [8] T. Roubícek, Optimal Control of a Stefan Problem with State-Space Constraints, Numer. Math., Vol. 50, 1987, pp. 723-744. Zbl0589.65056MR884297
  9. [9] A. Visintin, Sur le problème de Stefan avec flux non linéaire, Boll. U.M.I.,C-18,1981, pp. 63-86. Zbl0471.35078MR631569

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.