Equivariant harmonic maps between manifolds with metrics of ( p , q ) -signature

Andrea Ratto

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 6, page 503-524
  • ISSN: 0294-1449

How to cite

top

Ratto, Andrea. "Equivariant harmonic maps between manifolds with metrics of $(p, q)$-signature." Annales de l'I.H.P. Analyse non linéaire 6.6 (1989): 503-524. <http://eudml.org/doc/78189>.

@article{Ratto1989,
author = {Ratto, Andrea},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {hyperbolic systems; Lorentzian manifold; harmonic maps; Cauchy problem},
language = {eng},
number = {6},
pages = {503-524},
publisher = {Gauthier-Villars},
title = {Equivariant harmonic maps between manifolds with metrics of $(p, q)$-signature},
url = {http://eudml.org/doc/78189},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Ratto, Andrea
TI - Equivariant harmonic maps between manifolds with metrics of $(p, q)$-signature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 6
SP - 503
EP - 524
LA - eng
KW - hyperbolic systems; Lorentzian manifold; harmonic maps; Cauchy problem
UR - http://eudml.org/doc/78189
ER -

References

top
  1. [Ba] P. Baird, Harmonic Maps with Symmetries, Harmonic Morphisms and Deformation of Metrics, Research Notes in Math., Pitman, 1983. Zbl0515.58010
  2. [CB] Y. Choquet-Bruhat, Global Existence Theorems for Hyperbolic Maps, Ann. Inst. Henri Poincaré, Physique théorique, Vol. 46, 1987, pp. 97-111. Zbl0608.58018MR877997
  3. [EL1] J. Eells and L. Lemaire, A Report on Harmonic Maps, Bull. London Math. Soc., Vol. 10, 1978, pp. 1-68. Zbl0401.58003MR495450
  4. [EL2] J. Eells and L. Lemaire, Another Report on Harmonic Maps, Bull. London Math. Soc. (to appear). Zbl0669.58009MR956352
  5. [ES] J. Eells and J.H. Sampson, Harmonic mappings of riemannian manifolds, Am. J. Math., Vol. 86, 1964, pp. 109-160. Zbl0122.40102MR164306
  6. [GV] J. Ginibre and G. Velo, The Cauchy Problem for the O(N), C P(N-1) and G C(n, p) Models, Ann. Phys., Vol. 142, 1982, pp. 393-415. Zbl0512.58018MR678488
  7. [GU1] C.H. Gu, On the Cauchy Problem for Harmonic Maps Defined on Two Dimensional Minkowski Space, Commun. Pure Appl. Math., Vol. 33, 1980, pp. 727-737. Zbl0475.58005MR596432
  8. [GU2] C.H. Gu, On the Harmonic Maps from R1, 1 to S1, 1, J. Reine Ang. Math., Vol. 346, 1984, pp. 101-109. Zbl0513.58022MR727398
  9. [Ha] P. Hartman, Ordinary Differential Equations, Wiley, 1984. Zbl0125.32102MR171038
  10. [HL] J.X. Hong and J.Q. Liu, On Existence and Non-Existence of Some Harmonic Maps, Preprint, I.C.T.P., 1987. 
  11. [KW] H. Karcher and I.C. Wood, Non-Existence Results and Growth Properties for Harmonic Maps and Forms, J. Reine Angew. Math., Vol. 353, 1984, pp. 165-180. Zbl0544.58008MR765831
  12. [Le] J. Leray, Hyperbolic Differential Equations, I.A.S., Princeton, 1952. MR63548
  13. [Po] K. Pohlmeyer, Integrable Hamiltonian Systems and Interaction Through Quadratic Constrains, Commun. Math. Phys., Vol. 46, 1976, pp. 207-221. Zbl0996.37504MR408535
  14. [PR] V. Pettinati and A. Ratio, Existence and Non-Existence Results for Harmonic Maps Between Spheres, Ann. Sci. Norm. Sup. Pisa, to appear. Zbl0718.58017
  15. [R1] A. Ratto, Construction d'application harmoniques entre sphères euclidiennes, C.R. Acad. Sci. Paris, A304, Série A, 1987, pp. 185-186. Zbl0612.58014MR880922
  16. [R2] A. Ratto, Harmonic Maps of Spheres and Equivariant Theory, Ph. D. Thesis, Un. of Warwick, 1987. 
  17. [S1] R.T. Smith, Harmonic Mappings of Spheres, Amer. J. Math., Vol. 97, 1975, pp. 364-385. Zbl0321.57020MR391127
  18. [S2] R.T. Smith, Harmonic Mappings of Spheres, Ph. D. Thesis, Un. of Warwick, 1972. Zbl0279.53055MR298590
  19. [SW] R.K. Sachs and H. Wu,General Relativity for Mathematicians, Springer Verlag, Graduate texts in Math., Vol. 48, 1977. Zbl0373.53001MR503498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.