Variational problems with lipschitzian minimizers

F. H. Clarke; P. D. Loewen

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 185-209
  • ISSN: 0294-1449

How to cite

top

Clarke, F. H., and Loewen, P. D.. "Variational problems with lipschitzian minimizers." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 185-209. <http://eudml.org/doc/78194>.

@article{Clarke1989,
author = {Clarke, F. H., Loewen, P. D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variation; extremal growth condition; Lipschitzian regularity},
language = {eng},
pages = {185-209},
publisher = {Gauthier-Villars},
title = {Variational problems with lipschitzian minimizers},
url = {http://eudml.org/doc/78194},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Clarke, F. H.
AU - Loewen, P. D.
TI - Variational problems with lipschitzian minimizers
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 185
EP - 209
LA - eng
KW - calculus of variation; extremal growth condition; Lipschitzian regularity
UR - http://eudml.org/doc/78194
ER -

References

top
  1. [1] L. Cesari, Optimization—Theory and Applications. Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
  2. [2] F.H. Clarke, The Euler-Lagrange differential inclusion. J. Diff. Equations19(1975), pp. 80-90. Zbl0323.49021MR388196
  3. [3] F.H. Clarke, Optimization and Nonsmooth Analysis. WileyInterscience, New York, 1983. Zbl0582.49001MR709590
  4. [4] F.H. Clarke, Hamiltonian analysis of the generalized problem ofBolza. Trans. AMS301 (1987), pp. 385-400. Zbl0621.49011MR879580
  5. [5] F.H. Clarke and P.D. Loewen, An intermediate existence theory in the calculus of variations. Technical report CRM-1418, C. R. M., Univ. de Montreal, C. P. 6128- A, Montreal, Canada, H3C 3J7. 
  6. [6] F.H. Clarke and R.B. Vinter, On the conditions under which the Euler equation or the maximum principle hold. Appl. Math. Optim.12 (1984), pp. 73-79. Zbl0559.49012MR756513
  7. [7] F.H. Clarke and R.B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Amer. Math. Soc.289 (1985), pp. 73-98. Zbl0563.49009MR779053
  8. [8] F.H. Clarke and R.B. Vinter, Existence and regularity in the small in the calculus of variations.J. Diff. Equations59 (1985), pp. 336-354. Zbl0727.49003MR807852
  9. [9] L. Tonelli, Sure une méthode directe du calcul des variations. Rend. Circ. Mat. Palermo39(1915), pp. 233-264; also in Opere Scelte (vol. 2), Cremonese, Rome, 1961. Zbl45.0615.02JFM45.0615.02
  10. [10] L. Tonelli, Fondamenti di Calcolo delle Variazioni (2 vols.). Zanichelli, Bologna, 1921, 1923. JFM48.0581.09

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.