Forced second order conservative systems with periodic nonlinearity

J. Mava-Un

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 415-434
  • ISSN: 0294-1449

How to cite

top

Mava-Un, J.. "Forced second order conservative systems with periodic nonlinearity." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 415-434. <http://eudml.org/doc/78205>.

@article{Mava1989,
author = {Mava-Un, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
pages = {415-434},
publisher = {Gauthier-Villars},
title = {Forced second order conservative systems with periodic nonlinearity},
url = {http://eudml.org/doc/78205},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Mava-Un, J.
TI - Forced second order conservative systems with periodic nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 415
EP - 434
LA - eng
UR - http://eudml.org/doc/78205
ER -

References

top
  1. [1] V.V. Beletskii, On librations of satellites (in Russian), Irkusstvennie Sputniki Zemli3 (1959) 1-3. 
  2. [2] K.C. Chang, "Infinite Dimensional Morse Theory and its Applications", Séminaire de Mathématiques Supérieures n° 97, Presses Univ. Montréal, 1985. Zbl0609.58001MR837186
  3. [3] Dang Dinh Hai, Note on a differential equation describing the periodic motion of a satellite in its elliptical orbit, J. Nonlinear Analysis, to appear. Zbl0669.70028
  4. [4] P. Drabek and S. Invernizzi, Periodic solutions for systems of forced coupled pendulum-like equations, Quaderni n° 127, Univ. Trieste, aprile 1987 Zbl0652.34049MR915495
  5. [5] I. Ekeland, On the variational principle, J. Math. Anal. Appl.47 (1974) 324-353. Zbl0286.49015MR346619
  6. [6] M. Levi, F.C. Hoppenstaeadt and W.L. Miranker, Dynamics of the Josephson junction, Quarterly Appl. Math.36 (1978) 167-198. MR484023
  7. [7] J.A. Marlin, Periodic motions of coupled simple pendulums with periodic disturbances, Int. J. Nonlinear Mech.3 (1968) 439-447 Zbl0169.55605MR265690
  8. [8] J. Mawhin, On a differential equation for the periodic motions of a satellite around its center of mass, to appear in a volume dedicated to Mitropolsky's seventieth birthday. MR977519
  9. [9] J. Mawhin, "Problèmes de Dirichlet variationnels non-linéaires", Séminaire de Mathématiques Supérieures, Presses Univ. Montreal, to appear. Zbl0644.49001MR906453
  10. [10] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations52 (1984) 264-287. Zbl0557.34036MR741271
  11. [11] J. Mawhin and M. Willen, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in "Nonlinear Analysis and Optimization" , Vinti ed., Lecture Notes in Math. n° 1107, Springer Berlin, 1984, 181-192. Zbl0563.34048MR778588
  12. [12] J. Mawhin and M. Willem, "Critical point Theory and Hamiltonian Systems", in preparation. Zbl0676.58017
  13. [13] R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology5 (1966) 115-132. Zbl0143.35203MR259955
  14. [14] W.V. Petryshyn and Z.S. Yu, On the solvability of an equation describing the periodic motions of a satellite in its elliptic orbit, J. Nonlinear Analysis9 (1985) 969-975. Zbl0581.70024MR804562
  15. [15] P.H. Rabinowitz, Some minimax theorems and applications to non-linear partial differential equations, in "Nonlinear Analysis", Academic Press, New York, 1978, 161-177. Zbl0466.58015MR501092
  16. [16] M. Willem, Oscillations forcées de systèmes hamiltoniens, Publ. Sémin. Analyse non-linéaire Univ. Besançon, 1981. Zbl0482.70020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.