Forced second order conservative systems with periodic nonlinearity
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 415-434
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMava-Un, J.. "Forced second order conservative systems with periodic nonlinearity." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 415-434. <http://eudml.org/doc/78205>.
@article{Mava1989,
author = {Mava-Un, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
pages = {415-434},
publisher = {Gauthier-Villars},
title = {Forced second order conservative systems with periodic nonlinearity},
url = {http://eudml.org/doc/78205},
volume = {S6},
year = {1989},
}
TY - JOUR
AU - Mava-Un, J.
TI - Forced second order conservative systems with periodic nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 415
EP - 434
LA - eng
UR - http://eudml.org/doc/78205
ER -
References
top- [1] V.V. Beletskii, On librations of satellites (in Russian), Irkusstvennie Sputniki Zemli3 (1959) 1-3.
- [2] K.C. Chang, "Infinite Dimensional Morse Theory and its Applications", Séminaire de Mathématiques Supérieures n° 97, Presses Univ. Montréal, 1985. Zbl0609.58001MR837186
- [3] Dang Dinh Hai, Note on a differential equation describing the periodic motion of a satellite in its elliptical orbit, J. Nonlinear Analysis, to appear. Zbl0669.70028
- [4] P. Drabek and S. Invernizzi, Periodic solutions for systems of forced coupled pendulum-like equations, Quaderni n° 127, Univ. Trieste, aprile 1987 Zbl0652.34049MR915495
- [5] I. Ekeland, On the variational principle, J. Math. Anal. Appl.47 (1974) 324-353. Zbl0286.49015MR346619
- [6] M. Levi, F.C. Hoppenstaeadt and W.L. Miranker, Dynamics of the Josephson junction, Quarterly Appl. Math.36 (1978) 167-198. MR484023
- [7] J.A. Marlin, Periodic motions of coupled simple pendulums with periodic disturbances, Int. J. Nonlinear Mech.3 (1968) 439-447 Zbl0169.55605MR265690
- [8] J. Mawhin, On a differential equation for the periodic motions of a satellite around its center of mass, to appear in a volume dedicated to Mitropolsky's seventieth birthday. MR977519
- [9] J. Mawhin, "Problèmes de Dirichlet variationnels non-linéaires", Séminaire de Mathématiques Supérieures, Presses Univ. Montreal, to appear. Zbl0644.49001MR906453
- [10] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations52 (1984) 264-287. Zbl0557.34036MR741271
- [11] J. Mawhin and M. Willen, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in "Nonlinear Analysis and Optimization" , Vinti ed., Lecture Notes in Math. n° 1107, Springer Berlin, 1984, 181-192. Zbl0563.34048MR778588
- [12] J. Mawhin and M. Willem, "Critical point Theory and Hamiltonian Systems", in preparation. Zbl0676.58017
- [13] R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology5 (1966) 115-132. Zbl0143.35203MR259955
- [14] W.V. Petryshyn and Z.S. Yu, On the solvability of an equation describing the periodic motions of a satellite in its elliptic orbit, J. Nonlinear Analysis9 (1985) 969-975. Zbl0581.70024MR804562
- [15] P.H. Rabinowitz, Some minimax theorems and applications to non-linear partial differential equations, in "Nonlinear Analysis", Academic Press, New York, 1978, 161-177. Zbl0466.58015MR501092
- [16] M. Willem, Oscillations forcées de systèmes hamiltoniens, Publ. Sémin. Analyse non-linéaire Univ. Besançon, 1981. Zbl0482.70020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.