Bundle-based decomposition : conditions for convergence

S. M. Robinson

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 435-447
  • ISSN: 0294-1449

How to cite

top

Robinson, S. M.. "Bundle-based decomposition : conditions for convergence." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 435-447. <http://eudml.org/doc/78206>.

@article{Robinson1989,
author = {Robinson, S. M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Bundle-based decomposition; decentralized convex optimization; Computational tests; approximate minimization},
language = {eng},
pages = {435-447},
publisher = {Gauthier-Villars},
title = {Bundle-based decomposition : conditions for convergence},
url = {http://eudml.org/doc/78206},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Robinson, S. M.
TI - Bundle-based decomposition : conditions for convergence
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 435
EP - 447
LA - eng
KW - Bundle-based decomposition; decentralized convex optimization; Computational tests; approximate minimization
UR - http://eudml.org/doc/78206
ER -

References

top
  1. [1] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies No. 5 (North-Holland, Amsterdam, 1973). Zbl0252.47055MR348562
  2. [2] H. Brézis and A. Haraux, "Image d'une somme d'opérateurs monotones et applications," Israel Journal of Mathematics23 (1976) 165-186. Zbl0323.47041MR399965
  3. [3] J.K. Ho and E. Loute, "An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming," in: G. B. Dantzig, M. A. H. Dempster, and M. Kallio, eds., Large-Scale Linear Programming (International Institute for Applied Systems Analysis, Laxenburg, Austria, 1981) 425-460. Zbl0539.90063MR612625
  4. [4] J.K. Ho and E. Loute, "DECOMP User's Guide," unpublished manuscript. 
  5. [5] T. Kato, "Demicontinuity, hemicontinuity, and monotonicity," Bull. Amer. Math. Soc.70 (1964) 548-550. Zbl0123.10701MR163198
  6. [6] T. Kato, "Demicontinuity, hemicontinuity, and monotonicity. II," Bull. Amer. Math. Soc.73 (1967) 886-889. Zbl0184.36504MR238135
  7. [7] C. Lemaréchal, J .-J. Strodiot, and A. Bihain, "On a bundle algorithm for nons-mooth optimization," in: O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Nonlinear Programming4 (Academic Press, New York, 1981) 245-282. Zbl0533.49023MR663383
  8. [8] L. McLinden and R.C. Bergstrom, "Preservation of convergence of convex sets and functions in finite dimensions," Trans. Amer. Math. Soc.268 (1981) 127-142. Zbl0468.90063MR628449
  9. [9] D. Medhi, "Decomposition of structured large scale optimization problems and parallel computing," Dissertation, Computer Sciences Department, University of Wisconsin- Madison (Madison, WI 53706, 1987). See also two July 1988 manuscripts by this author: "Bundle-based decomposition for structured large-scale convex optimization problems: error estimate and computational experience," and "Parallel bundlebased decomposition for large-scale structured mathematical programming problems," AT&T Bell Laboratories, Holmdel, NJ 07733. 
  10. [10] B.A. Murtagh and M.A. Saunders, "MINOS 5.0 User's Guide," Technical Report No. SOL 83-20, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA 94305, December 1983). 
  11. [11] S.M. Robinson, "Bundle-based decomposition: Description and preliminary results," in: A. Prékopa, J. Szelezsán, and B. Strazicky, eds., System Modelling and Optimization (Lecture Notes in Control and Information Sciences No. 84, Springer-Verlag, Berlin, 1986) 751-756. Zbl0604.90098MR903515
  12. [12] R.T. Rockafellar, "Local boundedness of nonlinear, monotone operators," Michigan Mathematical Journal16 (1969) 397-407. Zbl0175.45002MR253014
  13. [13] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970). Zbl0193.18401MR274683
  14. [14] J. -J. Strodiot, V.H. Nguyen, and N. Heukemes, "∈- optimal solutions in nondifferentiable programming and some related questions," Math. Programming25 (1983) 307-328. Zbl0495.90067MR689660

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.