Multiple critical points for variational problems on partially ordered Hilbert spaces

K. Wysocki

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 287-304
  • ISSN: 0294-1449

How to cite

top

Wysocki, K.. "Multiple critical points for variational problems on partially ordered Hilbert spaces." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 287-304. <http://eudml.org/doc/78225>.

@article{Wysocki1990,
author = {Wysocki, K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multiple critical points; ordered Hilbert space},
language = {eng},
number = {4},
pages = {287-304},
publisher = {Gauthier-Villars},
title = {Multiple critical points for variational problems on partially ordered Hilbert spaces},
url = {http://eudml.org/doc/78225},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Wysocki, K.
TI - Multiple critical points for variational problems on partially ordered Hilbert spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 287
EP - 304
LA - eng
KW - multiple critical points; ordered Hilbert space
UR - http://eudml.org/doc/78225
ER -

References

top
  1. [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. Siam Rev., t. 18, 1976, p. 620-709. Zbl0345.47044MR415432
  2. [2] S.B. Angenent, J. Mallet-Paret, L.A. Peletier, Stable transition layers in similinear boundary value problem. J. Diff. Eq., t. 62, 1986, p. 427-442. Zbl0634.35041
  3. [3] R. Bott, Lectures on Morse theory, old and new. Bull. Am. Math. Soc., t. 7, 1982, p. 331-358. Zbl0505.58001MR663786
  4. [4] E.N. Dancer, Multiple fixed points of positive mappings. J. Reine aug. Math., t. 371, 1986, p. 46-66. Zbl0597.47034MR859319
  5. [5] K. Deimling, Ordinary Differential Equations in Banach Spaces. Lect. Notes Math., vol. 596, Springer1977. Zbl0361.34050MR463601
  6. [6] H. Hofer, Variational and topological methods in partially ordered Hilbert spaces. Math. Ann., t. 261, 1982, p. 493-514. Zbl0488.47034MR682663
  7. [7] H. Hofer, The topological degree at a critical point of moutain-pass type. Proceedings of Symposia in Pure Mathematics, vol. 45, 1986, p. 501-509. Zbl0608.58013MR843584
  8. [8] A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse. Boll. Un. Math. Ital., Suppl., 3, 1975, p. 1-32. Zbl0311.58006MR418150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.