Multiple critical points for variational problems on partially ordered Hilbert spaces
Annales de l'I.H.P. Analyse non linéaire (1990)
- Volume: 7, Issue: 4, page 287-304
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWysocki, K.. "Multiple critical points for variational problems on partially ordered Hilbert spaces." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 287-304. <http://eudml.org/doc/78225>.
@article{Wysocki1990,
author = {Wysocki, K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multiple critical points; ordered Hilbert space},
language = {eng},
number = {4},
pages = {287-304},
publisher = {Gauthier-Villars},
title = {Multiple critical points for variational problems on partially ordered Hilbert spaces},
url = {http://eudml.org/doc/78225},
volume = {7},
year = {1990},
}
TY - JOUR
AU - Wysocki, K.
TI - Multiple critical points for variational problems on partially ordered Hilbert spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 287
EP - 304
LA - eng
KW - multiple critical points; ordered Hilbert space
UR - http://eudml.org/doc/78225
ER -
References
top- [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. Siam Rev., t. 18, 1976, p. 620-709. Zbl0345.47044MR415432
- [2] S.B. Angenent, J. Mallet-Paret, L.A. Peletier, Stable transition layers in similinear boundary value problem. J. Diff. Eq., t. 62, 1986, p. 427-442. Zbl0634.35041
- [3] R. Bott, Lectures on Morse theory, old and new. Bull. Am. Math. Soc., t. 7, 1982, p. 331-358. Zbl0505.58001MR663786
- [4] E.N. Dancer, Multiple fixed points of positive mappings. J. Reine aug. Math., t. 371, 1986, p. 46-66. Zbl0597.47034MR859319
- [5] K. Deimling, Ordinary Differential Equations in Banach Spaces. Lect. Notes Math., vol. 596, Springer1977. Zbl0361.34050MR463601
- [6] H. Hofer, Variational and topological methods in partially ordered Hilbert spaces. Math. Ann., t. 261, 1982, p. 493-514. Zbl0488.47034MR682663
- [7] H. Hofer, The topological degree at a critical point of moutain-pass type. Proceedings of Symposia in Pure Mathematics, vol. 45, 1986, p. 501-509. Zbl0608.58013MR843584
- [8] A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse. Boll. Un. Math. Ital., Suppl., 3, 1975, p. 1-32. Zbl0311.58006MR418150
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.