Removable singularities for the Yang-Mills-Higgs equations in two dimensions

P. D. Smith

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 6, page 561-588
  • ISSN: 0294-1449

How to cite

top

Smith, P. D.. "Removable singularities for the Yang-Mills-Higgs equations in two dimensions." Annales de l'I.H.P. Analyse non linéaire 7.6 (1990): 561-588. <http://eudml.org/doc/78239>.

@article{Smith1990,
author = {Smith, P. D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {elliptic regularity; isolated point singularities},
language = {eng},
number = {6},
pages = {561-588},
publisher = {Gauthier-Villars},
title = {Removable singularities for the Yang-Mills-Higgs equations in two dimensions},
url = {http://eudml.org/doc/78239},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Smith, P. D.
TI - Removable singularities for the Yang-Mills-Higgs equations in two dimensions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 6
SP - 561
EP - 588
LA - eng
KW - elliptic regularity; isolated point singularities
UR - http://eudml.org/doc/78239
ER -

References

top
  1. [AMR] R. Abraham, J. Marsden and T. Rativ, Manifolds, Tensor Analysis and Applications, Addision Wesley, 1983. 
  2. [Bell] E. Beckenbuch and R. Bellman, Inequalities Ergebnisseder Math., Vol. 30, 1971, Springer-Verlag. Zbl0206.06802
  3. [BO] E. Bombieri, An introduction to Minimal Currents and Parametric Variational Problems, Proc. Beijing Conference on PDE and Geomtry, 1980. Zbl0529.49019
  4. [Giaq] M. Giaquintia, Multiple Integrals in the Calculus of Variations, Princeton Press, 1985. 
  5. [GS] B. Gidas and J. Spruck, Global and Local Behavior, Comm. Pure Appl. Math., Vol. 4, 1981, pp. 525-598. Zbl0465.35003MR615628
  6. [GT] D. Gilbarg and N. Trudinger, Quasilinear Elliptic P.D.E., Springer-Verlag, Second edition, 1983. MR737190
  7. [H] P. Hartman, Ordinary Differential Equations, Birkhauser, 1982. Zbl0476.34002MR658490
  8. [JT] A.J. Jaffe and C. Taubes, Vortices and Monopoles, Prog. Phys., Vol. 2, 1980, Birkhauser, Boston. Zbl0457.53034MR614447
  9. [Karch] P. Buser and H. Karcher, Gromov's Almost Flat Manifolds, Astérique, Vol. 81, Soc. Math. France. Zbl0459.53031
  10. [KN1] S. Kobayashi and K. Nomizo, Found. Diff. Geo., Wiley, 1963. 
  11. [LU] N. Ladyzenskya and N. Uralaltizva, Quasi Linear Elliptic Equations, Academic Press, 1968. 
  12. [MO] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966. Zbl0142.38701MR202511
  13. [P] T. Parkert,Gauge Theories on Foar Dimensional Manifolds, Comm. Math. Phys., Vol. 85, 1982. Zbl0502.53022MR677998
  14. [Sb1] L.M. Sibner, Removable Singularities of Yang-Mills Fields in R3, Composito Math., Vol. 53, 1984, pp. 91-104. Zbl0552.58037MR762308
  15. [Sb2] L.M. Sibner and R.J. Sibner, Removable Singularities of Coupled Yang-Mills Fields in R3, Comm. Math. Phys., Vol. 93, 1984, pp. 1-17. Zbl0552.35028MR737461
  16. [Sb3] L.M. Sibner, The Isolated Point Singularity Problem for the Yang-Mills Equations in Higher Dimensions, Math. Ann., 1985 (to appaear). Zbl0544.35082MR779610
  17. [SM] P.D. Smith, Removable Singularities for the Yang-Mills Higgs equation in 2 dimensions, Max Planck Institute, Preprint, MPI/87-35. 
  18. [U1] K. Uhlenbeck, Removable Singularities in Yang-Mills Fields, Comm. Math. Phys., Vol. 83, 1982, pp. 11-29. Zbl0491.58032MR648355
  19. [U2] K. Uhlenbeck, Connections with LP Bounds on Curvature, Comm. Math. Phys., 83, 1982, pp. 31-42. Zbl0499.58019MR648356
  20. [U3] K. Uhlenbeck, The Chern Classes of Sobolev Connections, Comm. Math. Phys., Vol. 101, 1985, pp. 449-457. Zbl0586.53018MR815194
  21. [UF] K. Uhlenbeck and D. Freed, Instantons and Four Manifolds, MSRI Publications, Springer, 1984. Zbl0559.57001MR757358

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.