Surfaces of constant Gauβ curvature and of arbitrary genus
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 1, page 1-15
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBöhme, R.. "Surfaces of constant Gauβ curvature and of arbitrary genus." Annales de l'I.H.P. Analyse non linéaire 8.1 (1991): 1-15. <http://eudml.org/doc/78243>.
@article{Böhme1991,
author = {Böhme, R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Dirichlet problem; constant curvature},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Gauthier-Villars},
title = {Surfaces of constant Gauβ curvature and of arbitrary genus},
url = {http://eudml.org/doc/78243},
volume = {8},
year = {1991},
}
TY - JOUR
AU - Böhme, R.
TI - Surfaces of constant Gauβ curvature and of arbitrary genus
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 1
SP - 1
EP - 15
LA - eng
KW - Dirichlet problem; constant curvature
UR - http://eudml.org/doc/78243
ER -
References
top- [1] H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer Verlag, Berlin, Heidelberg, New York, 3. Aufl., 1972. Zbl0273.30001MR73682
- [2] R. Böhme, Plateau Problems in R3, which can be Solved by Minimal Surfaces of Any Finite Genus, Proceedings, Metz, 1989 (in press).
- [3] J. Oliker, Hypersurfaces in Rn+1 with Prescribed Gauss Curvature and Related Equations of Monge-Ampère Type, Comm. Part. Diff. Eq., Vol. 9, 1984, pp. 807-838. Zbl0559.58031MR748368
- [4] R. Böhme and A.J. Tromba, The Index Theorem for Classical Minimal Surfaces, Ann. Math., Vol. 113, 1981, pp. 447-499. Zbl0482.58010MR621012
- [5] R. Böhme, Manifolds of Dimension 3 with Prescribed Positive Curvature and with Nontrivial Homology, Forum Mathematicum, 1990 (to appear). Zbl0709.53042MR1067210
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.