Concentration of solutions to elliptic equations with critical nonlinearity
Annales de l'I.H.P. Analyse non linéaire (1992)
- Volume: 9, Issue: 2, page 201-218
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRey, O.. "Concentration of solutions to elliptic equations with critical nonlinearity." Annales de l'I.H.P. Analyse non linéaire 9.2 (1992): 201-218. <http://eudml.org/doc/78276>.
@article{Rey1992,
author = {Rey, O.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence of solutions; blow-up; variational problems with lack of compactness; limiting Sobolev exponent; Dirichlet boundary conditions},
language = {eng},
number = {2},
pages = {201-218},
publisher = {Gauthier-Villars},
title = {Concentration of solutions to elliptic equations with critical nonlinearity},
url = {http://eudml.org/doc/78276},
volume = {9},
year = {1992},
}
TY - JOUR
AU - Rey, O.
TI - Concentration of solutions to elliptic equations with critical nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 2
SP - 201
EP - 218
LA - eng
KW - existence of solutions; blow-up; variational problems with lack of compactness; limiting Sobolev exponent; Dirichlet boundary conditions
UR - http://eudml.org/doc/78276
ER -
References
top- [B] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, No. 182, Longman, 1989. Zbl0676.58021
- [BC] A. Bahri and J.-M. Coron, On a Nonlinear Elliptic Equation Involving the Critical Sobolev Exponent: the Effect of the Topology of the Domain, Comm. Pure Applied Math., Vol. 41, 1988, pp. 255-294. Zbl0649.35033
- [BN1] H. Brézis and L. Nirenberg, Positive Solutions of Nonlinear Equations Involving Critical Sobolev Exponents, Comm. Pure Applied Math., Vol. 36, 1983, pp.437-477. Zbl0541.35029MR709644
- [BN2] H. Brézis and L. Nirenberg, A Minimization Problem with Critical Exponent and Nonzero Data (to appear). Zbl0763.46023
- [BP] H. Brézis and L.A. Peletier, Asymptotics for Elliptic Equations Involving Critical Growth, Partial Differential Equations and the Calculus of Variations, F. COLOMBANI, L. MODICA and S. SPAGNOLO Eds., Birkhauser, 1989. Zbl0685.35013MR1034005
- [H] Z.C. Han, Asymptotic Approach to Singular Solutions for Nonlinear Elliptic Equations Involving Critical Sobolev Exponent (to appear). Zbl0729.35014MR1096602
- [P] S. Pohozaev, Eigenfunctions of the Equation Δu = λf(u), Soviet Math. Dokl., Vol. 6, 1965, pp. 1408-1411.
- [R1] O. Rey, The Role of Green's function in a Nonlinear Elliptic Equation Involving the Critical Sobolev Exponent, J. Funct. Analysis, Vol. 89, No. 1, 1990, pp. 1-52. Zbl0786.35059MR1040954
- [R2] O. Rey, A Multiplicity Result for a Variational Problem with Lack of Compactness, J. Nonlinear Anal. T.M.A., Vol. 13, No. 10, 1989, pp. 1241-1249. Zbl0702.35101MR1020729
- [R3] O. Rey, Proof of Two Conjectures of H. Brézis and L. A. Peletier, Manuscripta Math., Vol. 65, 1989, pp. 19-37. Zbl0708.35032MR1006624
- [R4] O. Rey, Bifurcation from Infinity in a Nonlinear Elliptic Equation Involving the Limiting Sobolev Exponent, Duke Math. Journal., Vol. 60, 1990, pp. 815-861. Zbl0711.35012MR1054534
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.