Bounded approximants to monotone operators on Banach spaces

S. Fitzpatrick; R. R. Phelps

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 5, page 573-595
  • ISSN: 0294-1449

How to cite

top

Fitzpatrick, S., and Phelps, R. R.. "Bounded approximants to monotone operators on Banach spaces." Annales de l'I.H.P. Analyse non linéaire 9.5 (1992): 573-595. <http://eudml.org/doc/78291>.

@article{Fitzpatrick1992,
author = {Fitzpatrick, S., Phelps, R. R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Mosco convergence; maximal monotone set-valued operator; subdifferentials; inf-convolution; approximation scheme; Moreau-Yosida approximation method; non-reflexive Banach spaces},
language = {eng},
number = {5},
pages = {573-595},
publisher = {Gauthier-Villars},
title = {Bounded approximants to monotone operators on Banach spaces},
url = {http://eudml.org/doc/78291},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Fitzpatrick, S.
AU - Phelps, R. R.
TI - Bounded approximants to monotone operators on Banach spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 5
SP - 573
EP - 595
LA - eng
KW - Mosco convergence; maximal monotone set-valued operator; subdifferentials; inf-convolution; approximation scheme; Moreau-Yosida approximation method; non-reflexive Banach spaces
UR - http://eudml.org/doc/78291
ER -

References

top
  1. [As] E. Asplund, Fréchet Differentiability of Convex Functions, Acta Math., Vol. 121, 1968, pp. 31-47. Zbl0162.17501MR231199
  2. [At] H. Attouch, Variational Convergence for Functions and Operators, Pitman, 1984. Zbl0561.49012MR773850
  3. [A-N-T] H. Attouch, J.L. Ndoutoume and M. Thera, Epigraphical Convergence of Functions and Convergence of their Derivatives in Banach Spaces, Sem. d'Analyse Convexe, Montpellier, 1990, Exposé No. 9. Zbl0764.46042MR1114679
  4. [Bai] R. Baire, Leçons sur les fonctions discontinues, Gauthier-Villars, Paris, 1905. Zbl0897.01040JFM36.0438.01
  5. [B-F] J. Borwein and S.P. Fitzpatrick, Local Boundedness of Monotone Operators Under Minimal Hypotheses, Bull. Australian Math. Soc., Vol. 39, 1989, pp. 439- 441. Zbl0694.47040MR995141
  6. [B-C-P] H. Brezis, M. Crandall and A. Pazy, Perturbations of Nonlinear Maximal Monotone Sets, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 123-144. Zbl0182.47501MR257805
  7. [Da] M.M. Day, Normed Linear Spaces, 3rd Ed., Egeb. der Math. u. ihrer Grenzgeb., Band 21, Springer-Verlag, 1973. Zbl0268.46013MR344849
  8. [D-F] H. Debrunner and P. Flop, Ein Erweiterungssatz für monotone Mengen, Arch. Math., Vol. 15, 1964, pp. 445-447. Zbl0129.09203MR170189
  9. [De] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. Zbl0559.47040MR787404
  10. [Go1] J.-P. Gossez, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl., Vol. 34, 1971, pp. 371-395. Zbl0228.47040MR313890
  11. [Go2] J.-P. Gossez, On the Range of a Coercive Maximal Monotone Operator in a Nonreflexive Banach Space, Proc. Amer. Math. Soc., Vol. 35, 1972, pp. 88-92. Zbl0251.47050MR298492
  12. [Go3] J.-P. Gossez, On a Convexity Property of the Range of a Maximal Monotone Operator, Proc. Amer. Math. Soc., Vol. 55, 1976, pp. 359-360. Zbl0331.47029MR397485
  13. [Hau] F. Hausdorff, Über halbstetige Funcktionen und deren Verallgemeinerung, Math. Zeit., Vol. 5, 1919, pp. 292-309. Zbl47.0240.01MR1544388JFM47.0240.01
  14. [H-U1] J.-B. Hiriart-Urruty, Lipschitz r-Continuity of the Approximate Subdifferential of a Convex Function, Math. Scand., Vol. 47, 1980, pp. 123-134. Zbl0426.26005MR600082
  15. [H-U2] J.-B. Hiriart-Urruty, Extension of Lipschitz Functions, J. Math. Anal. Appl., Vol. 77, 1980, pp. 539-554. Zbl0455.26006MR593233
  16. [K-N] H. König and M. Neumann, Mathematische Wirtschaftstheorie (mit einer Einführung in die konvexe Analysis), Mathematical Systems in Economics, vol. 100, 1986, Hain Verlag, Königstein. Zbl0591.90001MR842432
  17. [La] P.-J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972. Zbl0238.90058MR467080
  18. [Lu] F.J. Luque, Convolutions of Maximal Monotone Mappings (preprint). 
  19. [McS] E.J. Mcshane, Extension of Range of Functions, Bull. Amer. Math. Soc., Vol. 40, 1934, pp. 837-842. Zbl0010.34606
  20. [No1] D. Noll, Generic Gateaux Differentiability of Convex Functions on Small Sets, J. Math. Analysis and Applications, Vol. 147, 1990, pp. 531-544. Zbl0715.46019MR1050225
  21. [No2] D. Noll, Generic Fréchet Differentiability of Convex Functions on Small Sets, Arch. Math., Vol. 54, 1990, pp. 487-492. Zbl0666.46049MR1049204
  22. [P-S] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff, 1978. Zbl0423.47021MR531036
  23. [Pa] G.B. Passty, The Parallel Sum of Nonlinear Monotone Operators, Nonlin. Analysis. Theory, Methods and Appl., Vol. 10, 1986, pp. 215-227. Zbl0628.47033MR834503
  24. [Ph] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math., No. 1364, Springer-Verlag, 1989. Zbl0658.46035MR984602
  25. [Ro1] R.T. Rockafellar, Local Boundedness of Nonlinear, Monotone Operators, Mich. Math. J., Vol. 16, 1969, pp. 397-407. Zbl0175.45002MR253014
  26. [Ro2] R.T. Rockafellar, Sums of Nonlinear Monotone Operators, Trans. Amer. Math. Soc., Vol. 149, 1970, pp. 75-88. Zbl0222.47017MR282272
  27. [Ro3] R.T. Rockafellar, On the Virtual Convexity of the Domain and Range of a Nonlinear Maximal Monotone Operator, Math. Ann., Vol. 185, 1970, pp. 81-90. Zbl0181.42202MR259697
  28. [Ro4] R.T. Rockafellar, Characterization of the Subdifferentials of Convex Functions, Pacific J. Math., Vol. 17, 1966, pp. 497-510. Zbl0145.15901MR193549
  29. [Ro5] R.T. Rockafellar, On the Maximal Monotonicity of Subdifferential Mappings, Pacific J. Math., Vol. 33, 1970, pp. 209-216. Zbl0199.47101MR262827
  30. [Si] S. Simons, The Least Slope of a Convex Function and the Maximal Monotonicity of its Subdifferential, J. Optimization Theory and Applications (to appear). Zbl0795.49016
  31. [To] R.M. Torrejon, Parturbation of Nonlinear Operators and their Parallel Sum, Nonlin. Analysis. Theory, Methods and Appl., Vol. 10, 1986, pp. 483-490. Zbl0607.47068MR839360
  32. [Tu] A.W. Tucker, Dual Systems of Homogeneous Linear Equations, Linear Inequali- ties and Related Systems, H. W. KUHN and A. W. TUCKER Eds., Annals of Math. Studies, Vol. 38, 1956, pp. 3-18. Zbl0072.37503
  33. [Wh] H. Whitney, Analytic Extensions of Differentiable Functions Defined on Closed Sets, Trans. Amer. Math. Soc., Vol. 36, 1934, pp. 63-89. Zbl0008.24902MR1501735JFM60.0217.01
  34. [Ze] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/A, Linear Monotone Operators, Vol. II/B, Nonlinear Monotone Operators, Springer-Verlag, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.