The initial-boundary value problem for the non-barotropic compressible Euler equations : structural-stability and data dependence

H. Beirão da Veiga

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 3, page 297-311
  • ISSN: 0294-1449

How to cite

top

Beirão da Veiga, H.. "The initial-boundary value problem for the non-barotropic compressible Euler equations : structural-stability and data dependence." Annales de l'I.H.P. Analyse non linéaire 11.3 (1994): 297-311. <http://eudml.org/doc/78333>.

@article{BeirãodaVeiga1994,
author = {Beirão da Veiga, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Euler equations; structural stability; sharp data dependence; compressible inviscid fluids},
language = {eng},
number = {3},
pages = {297-311},
publisher = {Gauthier-Villars},
title = {The initial-boundary value problem for the non-barotropic compressible Euler equations : structural-stability and data dependence},
url = {http://eudml.org/doc/78333},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Beirão da Veiga, H.
TI - The initial-boundary value problem for the non-barotropic compressible Euler equations : structural-stability and data dependence
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 3
SP - 297
EP - 311
LA - eng
KW - Euler equations; structural stability; sharp data dependence; compressible inviscid fluids
UR - http://eudml.org/doc/78333
ER -

References

top
  1. [A] R. Agemi, The Initial Boundary Value Problem for Inviscid Barotropic Fluid Motion, Hokkaido Math., J., Vol. 10, 1981, pp. 156-182. Zbl0472.76065MR616950
  2. [BV1] H. Beirão da veiga, Un théorème d'existence dans la dynamique des fluides compressibles, C. R. Acad. Sci. Paris, Vol. 289, 1979, pp. 297-299. MR558813
  3. [BV2] H. Beirão da veiga, On the Barotropic Motion of Compressible Perfect Fluids, Ann. Sc. Norm. Sup. Pisa, 1981, pp. 317-351. Zbl0477.76059MR623940
  4. [BV3] H. Beirão da veiga, Perturbation Theory and Well-posedness in Hadamard's Sense of Hyperbolic Initial-Boundary Value Problems, preprint 2-71 (582), Department of Mathematics, Univ. of Pisa (April 1991), JNA: TMA (to appear). Zbl0818.35057MR1205375
  5. [BV4] H. Beirão da veiga, Data Dependence in the Mathematical Theory of Compressible Inviscid Fluids, Arch. Rat. Mech. Analysis, Vol. 119, 1992, pp. 109-127. Zbl0754.76068MR1176361
  6. [BV5] H. Beirão da veiga, Perturbation Theorems for Linear Hyperbolic Mixed Problems and Applications to the Compressible Euler Equations, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 221-259. Zbl0791.35102MR1199199
  7. [BV6] H. Beirão da veiga, Structural-stability and Data Dependence for Fully Non-linear Hyperbolic Problems, Arch. Rat. Mech. Analysis, Vol. 120, 1992, pp. 51-60. Zbl0801.35083MR1182407
  8. [BV7] H. Beirão da veiga, On the Singular Limit for Slightly Compressible Fluids, preprint, Math. Dept. Univ. Pisa 2.98 (637), May 1992, Calculus of Variations and P.D.E.'s (to appear). Zbl0805.35009MR1385526
  9. [E1] D.G. Ebin, The Initial Boundary Value Problem for Sub-sonic Fluid Motion, Comm. Pure Appl. Math., Vol. 32, 1979, pp. 1-19. Zbl0378.76043MR508916
  10. [E2] D.G. Ebin, The Motion of Slightly Compressible Fluids Viewed as Motion with a Strong Constraining Force, Annals of Math., Vol. 105, 1977, pp. 141-200. Zbl0373.76007MR431261
  11. [E3] D.G. Ebin, Motion of Slightly Compressible Fluids in a Bounded Domain, Comm. Pure Appl. Math., Vol. 35, 1982, pp. 451-485. Zbl0478.76011MR657824
  12. [KMa1] S. Klainerman and A. Majda, Singular Limits of Quasilinear Hyperbolic Systems with Large Parameters and the Incompressible Limit of Compressible Fluids, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 481-524. Zbl0476.76068MR615627
  13. [KMa2] S. Klainerman and A. Majda, Compressible and Incompressible Fluids, Comm. Pure Appl. Math., Vol. 35, 1982, pp. 629-653. Zbl0478.76091MR668409
  14. [Ma] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions, Springer-Verlag, Appl. Math. Sci., Vol. 53, New York, 1984. Zbl0537.76001
  15. [Sc1] S. Schochet, The Compressible Euler Equations in a Bounded Domain: Existence of Solutions and the Compressible Limit, Comm. Math. Phys., Vol. 104, 1986, pp. 49-75. Zbl0612.76082MR834481
  16. [Sc2] S. Schochet, Singular Limits in Bounded Domains for Quasi-linear Symmetric Hyperbolic Systems Having a Vorticity Equation, J. Diff. Eq., Vol. 68, 1987, pp. 400-428. Zbl0633.35047MR891336

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.