Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case

Frank Pacard

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 5, page 537-551
  • ISSN: 0294-1449

How to cite

top

Pacard, Frank. "Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case." Annales de l'I.H.P. Analyse non linéaire 11.5 (1994): 537-551. <http://eudml.org/doc/78343>.

@article{Pacard1994,
author = {Pacard, Frank},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {supercritical nonlinearity; Hausdorff dimension of the singular set},
language = {eng},
number = {5},
pages = {537-551},
publisher = {Gauthier-Villars},
title = {Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case},
url = {http://eudml.org/doc/78343},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Pacard, Frank
TI - Convergence and partial regularity for weak solutions of some nonlinear elliptic equation : the supercritical case
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 5
SP - 537
EP - 551
LA - eng
KW - supercritical nonlinearity; Hausdorff dimension of the singular set
UR - http://eudml.org/doc/78343
ER -

References

top
  1. [1] F. Bethuel, Partial Regularity for Stationary Harmonic Maps , to appear inManuscripta Math. Zbl0792.53039
  2. [2] S. Campanato, Proprieta di Inclusione per Spazi di Morrey, Ricerche Mat., Vol. 12, 1963, p. 67-86. Zbl0192.22703MR156228
  3. [3] S. Campanato, Equazioni Ellittiche del II Ordine e Spazi L(2,λ), Ann. Mat. Pura Appl., Vol. 4, 69, 1965, p. 321-381. Zbl0145.36603MR192168
  4. [4] L.C. Evans, Partial Regularity for Stationary Harmonic Maps into Spheres, Arch. Rational Mech. Anal., Vol. 116, 1991, p. 101-113. Zbl0754.58007MR1143435
  5. [5] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Analysis, Annals of Mathematical Studies, Vol. 105, Princeton Univ. Press, 1989. Zbl0516.49003
  6. [6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of the Second Order, Springer, Berlin-Heidelberg-New York, 1977. Zbl0361.35003MR473443
  7. [7] R. Hardt, D. Kinderlehrer, F.H. Lin, Existence and Partial Regularity of Static Liquid Cristal Configurations, Comm. Math. Phys., Vol. 105, 1986, p. 547-570. Zbl0611.35077MR852090
  8. [8] C.B.Jr. Morrey, Multiple Integrals in the Calculus of Variations, Berlin-Heidelberg-New York, Springer, 1966. Zbl0142.38701MR202511
  9. [9] F. Pacard, A Note on the Regularity of Weak Solutions of -Δu = uα in Rn, n ≥ 3, Houston Journal of Math., Vol. 18, 4, 1982, p. 621-632. Zbl0819.35045MR1201489
  10. [10] F. Pacard, Partial Regularity for Weak Solutions of a Nonlinear Elliptic Equation , to appear inManuscripta Mathematica. Zbl0811.35011MR1216772
  11. [11] S.I. Pohozaev, Eigenfunctions of the Equation Δu + λf(u) = 0, Soviet. Math. Doklady, Vol. 6, 1965, p. 1408-1411. Zbl0141.30202MR192184
  12. [12] R. Schoen, Analytic Aspects for the Harmonic Map Problem, Math. Sci. Res. Inst. Publi., Vol. 2, Springer, Berlin, 1984. Zbl0551.58011MR765241

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.