Persistent homoclinic tangencies and the unfolding of cycles
Annales de l'I.H.P. Analyse non linéaire (1994)
- Volume: 11, Issue: 6, page 643-659
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDíaz, Lorenzo J., and Ures, Raúl. "Persistent homoclinic tangencies and the unfolding of cycles." Annales de l'I.H.P. Analyse non linéaire 11.6 (1994): 643-659. <http://eudml.org/doc/78347>.
@article{Díaz1994,
author = {Díaz, Lorenzo J., Ures, Raúl},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bifurcation; cycle; heteroclinic point; homoclinic tangency; hyperbolic},
language = {eng},
number = {6},
pages = {643-659},
publisher = {Gauthier-Villars},
title = {Persistent homoclinic tangencies and the unfolding of cycles},
url = {http://eudml.org/doc/78347},
volume = {11},
year = {1994},
}
TY - JOUR
AU - Díaz, Lorenzo J.
AU - Ures, Raúl
TI - Persistent homoclinic tangencies and the unfolding of cycles
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 6
SP - 643
EP - 659
LA - eng
KW - bifurcation; cycle; heteroclinic point; homoclinic tangency; hyperbolic
UR - http://eudml.org/doc/78347
ER -
References
top- [1] M. Benedicks and L. Carleson, The dynamic of the Hénon map, Ann. of Math., Vol. 133, 1991, pp. 73-169. Zbl0724.58042MR1087346
- [2] L.J. Diaz, Robust nonhyperbolic dynamics and the creation of heterodimensional cycles, Erg. Th. and Dyn. Sys. (to appear). Zbl0831.58035
- [3] L.J. Diaz, Persistence of heteroclinic cycles and nonhyperbolic dynamics at the unfolding of heteroclinic bifurcations, preprint. Zbl0836.58031
- [4] L.J. Diaz, and J. Rocha, Non-connected heterodimensional cycles: bifurcation and stability, Nonlinearity, Vol. 5, 1992, pp. 1315-1341. Zbl0780.58033MR1192520
- [5] L.J. Diaz, Hyperbolicity and the creation of heterodimensional cycles, in preparation.
- [6] L.J. Diaz, J. Rocha and M. Viana, Prevalence of strange attractors and critical saddle-node cycles, preprint. Zbl0865.58034
- [7] L. Mora and M. Viana, The abundance of strange attractors, Acta Math., Vol. 171, 1993, pp. 1-72. Zbl0815.58016MR1237897
- [8] S. Newhouse, Nondensity of Axiom A(a) on S2, Proc. Symp. Pure Math. Am. Math. Soc., Vol. 14, 1970. Zbl0206.25801MR277005
- [9] S. Newhouse, The abundance of wild hyperbolic sets and non smooth stable sets for diffeomorphisms, Publ. I.H.E.S., Vol. 50, 1979, pp. 101-151. Zbl0445.58022MR556584
- [10] S. Newhouse and J. Palis , Cycles and bifurcation theory, Publ. Asterisque, Vol. 31, 1976 pp. 44-140. Zbl0322.58009MR516408
- [11] S. Newhouse, J. Palis and F. Takens , Bifurcations and stability of families of diffeomorphisms, Publ. I.H.E.S. , Vol. 57, 1983, pp. 5-71. Zbl0518.58031MR699057
- [12] J. Palis and F. Takens , Hyperbolicity and the creation of homoclinic orbits, Ann. of Math., Vol. 125, 1987, pp. 337-374. Zbl0641.58029MR881272
- [13] J. Palis and F. Takens , Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Fractal Dimensions and Infinitely Many Attractors, Cambridge University Press, 1993. Zbl0790.58014MR1237641
- [14] J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many sinks, Ann. of Math. (to appear). Zbl0817.58004
- [15] J. Palis and J.C. Yoccoz, Homoclinic bifurcations: Large Haussdorf dimension and non-hyperbolic behaviour, Acta Math., Vol. 172, 1994, pp. 91-136. Zbl0801.58035MR1263999
- [16] N. Romero, Persistence of homoclinic tangencies in higher dimension, Erg. Th. and Dyr. Sys. (to appear). Zbl0833.58020MR1346398
- [17] F. Takens, Partially hyperbolic fixed points, Topology, Vol. 8, 1971, pp. 133-147. Zbl0214.22901MR307279
- [18] M. Viana, Strange attractors in higher dimensions, Bol. Soc. Bras. Mat., Vol. 24, 1993, pp. 13-62. Zbl0784.58044MR1224299
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.