Some constancy results for nematic liquid crystals and harmonic maps
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 1, page 99-115
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChou, Kai Seng, and Zhu, Xi-Ping. "Some constancy results for nematic liquid crystals and harmonic maps." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 99-115. <http://eudml.org/doc/78354>.
@article{Chou1995,
author = {Chou, Kai Seng, Zhu, Xi-Ping},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {harmonic maps; Pokhozaev identity},
language = {eng},
number = {1},
pages = {99-115},
publisher = {Gauthier-Villars},
title = {Some constancy results for nematic liquid crystals and harmonic maps},
url = {http://eudml.org/doc/78354},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Chou, Kai Seng
AU - Zhu, Xi-Ping
TI - Some constancy results for nematic liquid crystals and harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 99
EP - 115
LA - eng
KW - harmonic maps; Pokhozaev identity
UR - http://eudml.org/doc/78354
ER -
References
top- [21] Y. Yang, Existence, regularity, and asymptotic behavior of the solutions to the Ginzburg-Landau equations on R3, Commun. Math. Phys., Vol. 123, 1989, pp. 147-161. Zbl0678.35086MR1002036
- [1] A. Bahri and J.M. Coron, On a nonlinear elliptic problem involving the critical Sobolev exponent: The effect of the topology of the domain, Com. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
- [2] F. Bethuel and H. Brezis, Regularity of minimizers of relaxed energies for harmonic maps, C. R. Acad. Sci. Paris, t. 310, Series I, 1990, pp. 827-829. Zbl0706.35027MR1058505
- [3] F. Bethuel, H. Brezis and J.M. Coron, Relaxed energies for harmonic maps, in Variational Problems, H. BERESTYCKI, J. M. CORON and I. EKELAND eds., Birkhäuser, 1990. Zbl0793.58011MR1205144
- [4] W. Ding, Positive solutions of Δu+u(n+2)/(n-2) = 0 on a contractible domain, preprint. MR1027983
- [5] J.L. Ericksen, Equilibrium theory of liquid crystals, in Advances in Liquid Crystals, 2, pp. 233-299, G. H. BROWN ed., New York: Academic Press, 1976.
- [6] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, IMA, 5, Springer-Verlag, 1986. Zbl0704.76005MR900833
- [7] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Com. Math. Phy., Vol. 105, 1986, pp. 547-570. Zbl0611.35077MR852090
- [8] H. Karcher and J.C. Wood, Non-existence results and growth properties for harmonic maps and forms, J. Reine Angew. Math., Vol. 353, 1984, pp. 165-180. Zbl0544.58008MR765831
- [9] L. Lemaire, Applications harmoniques de surfaces riemanniennes, J. Diff. Geom., Vol. 13, 1978, pp. 51-78. Zbl0388.58003MR520601
- [10] F.H. Lin, Nonlinear theory of defects in nematic liquid crystal; phase transition and flow phenomena, Com. Pure. Appl. Math., Vol. 42, 1989, pp. 789-814. Zbl0703.35173MR1003435
- [11] S.I. Pohozaev, Eigenfunction of the equation Δu + λf (u) = 0, Soviet Math. Dokl., Vol. 6, 1965, pp. 1408-1411.
- [12] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., Vol. 35, 1986, pp. 681-703. Zbl0625.35027MR855181
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.