A solution to the bidimensional global asymptotic stability conjecture

Carlos Gutierrez

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 6, page 627-671
  • ISSN: 0294-1449

How to cite


Gutierrez, Carlos. "A solution to the bidimensional global asymptotic stability conjecture." Annales de l'I.H.P. Analyse non linéaire 12.6 (1995): 627-671. <http://eudml.org/doc/78370>.

author = {Gutierrez, Carlos},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global asymptotic; stability conjecture; stable manifold},
language = {eng},
number = {6},
pages = {627-671},
publisher = {Gauthier-Villars},
title = {A solution to the bidimensional global asymptotic stability conjecture},
url = {http://eudml.org/doc/78370},
volume = {12},
year = {1995},

AU - Gutierrez, Carlos
TI - A solution to the bidimensional global asymptotic stability conjecture
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 6
SP - 627
EP - 671
LA - eng
KW - global asymptotic; stability conjecture; stable manifold
UR - http://eudml.org/doc/78370
ER -


  1. [1] M.A. Aizerman, On a problem concerning the stability in the large of dynamical systems., Uspehi Mat. Nauk. N. S., Vol. 4, (4), pp. 187-188. Zbl0040.19601MR31610
  2. [2] N.E. Barabanov, On a problem of Kalman., Siberian Mathematical Journal, Vol. 29, (3), 1988, pp. 333-341. Zbl0713.93044MR953016
  3. [3] R. Fessler, A solution of the two dimensional Global Asymptotic Jacobian Stability Conjecture, Preprint. ETH-Zentrum, Switzerland. Zbl0835.34052
  4. [4] A. Gasull, J. Llibre and J. Sotomayor, Global asymptotic stability of differential equations in the plane, J. diff. Eq., 1989, To appear. Zbl0732.34045MR1111178
  5. [5] A. Gasull and J. Sotomayor, On the basin of attraction of dissipative planar vector fields, Lecture Notes in Mathematics. Springer-Verlag. Procc. Coll. Periodic Orbits and Bifurcations. Luminy, 1989, To appear. Zbl0713.34053MR1094380
  6. [6] G. Gorni and G. Zampieri, On the global conjecture for global asymptotic stability, 1990, To appear. Zbl0739.34047
  7. [7] C. Gutierrez, Dissipative vector fields on the plane with infinitely many attracting hyperbolic singularities, Bol. Soc. Bras. Mat., Vol. 22, No. 2, 1992, pp. 179-190. Zbl0776.34024MR1179484
  8. [8] P. Hartman, On stability in the large for systems of ordinary differential equations, Can. J. Math., Vol. 13, 1961, pp. 480-492. Zbl0103.05901MR123791
  9. [9] P. Hartman, Ordinary differential equations, Sec. Ed. Birkhäuser, 1982. Zbl0476.34002MR658490
  10. [10] R.E. Kalman, On Physical and Mathematical mechanisms of instability in nonlinear automatic control systems, Journal of Applied Mechanics Transactions, ASME, Vol. 79, (3), 1957, pp. 553-566. MR88420
  11. [11] N.N. Krasovskii, Some problems of the stability theory of motion, 1959, In russian. Gosudartv Izdat. Fiz. Math. Lit., Moscow., English translation, Stanford University Press, 1963. 
  12. [12] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J., Vol. 12, 1960, pp. 305-317. Zbl0096.28802MR126019
  13. [13] G. Meisters and O. Olech, Global Stability, injectivity and the Jacobian Conjecture, To appear in the Procc. of the First World Congress on Nonlinear Analysis held at Tampa, Florida. August, 1992. Zbl0854.34054
  14. [14] G. Meisters and O. Olech, Solution of the global asymptotic stability Jacobian conjecture for the polynomial case, Analyse Mathématique et applications. Contributions en l'honneur de J. L. Lions., Gauthier-Villars, Paris, 1988, pp. 373-381. Zbl0668.34048MR956968
  15. [15] C. Olech, On the global stability of an autonomous system on the plane, Cont. toDiff. Eq., Vol. 1, 1963, pp. 389-400. Zbl0136.08602MR147734
  16. [16] B. Smith and F. Xavier, Injectivity of local diffeomorphisms from nearly spectral conditions, University of Notre Dame, Preprint, 1993. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.