A solution to the bidimensional global asymptotic stability conjecture
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 6, page 627-671
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGutierrez, Carlos. "A solution to the bidimensional global asymptotic stability conjecture." Annales de l'I.H.P. Analyse non linéaire 12.6 (1995): 627-671. <http://eudml.org/doc/78370>.
@article{Gutierrez1995,
author = {Gutierrez, Carlos},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global asymptotic; stability conjecture; stable manifold},
language = {eng},
number = {6},
pages = {627-671},
publisher = {Gauthier-Villars},
title = {A solution to the bidimensional global asymptotic stability conjecture},
url = {http://eudml.org/doc/78370},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Gutierrez, Carlos
TI - A solution to the bidimensional global asymptotic stability conjecture
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 6
SP - 627
EP - 671
LA - eng
KW - global asymptotic; stability conjecture; stable manifold
UR - http://eudml.org/doc/78370
ER -
References
top- [1] M.A. Aizerman, On a problem concerning the stability in the large of dynamical systems., Uspehi Mat. Nauk. N. S., Vol. 4, (4), pp. 187-188. Zbl0040.19601MR31610
- [2] N.E. Barabanov, On a problem of Kalman., Siberian Mathematical Journal, Vol. 29, (3), 1988, pp. 333-341. Zbl0713.93044MR953016
- [3] R. Fessler, A solution of the two dimensional Global Asymptotic Jacobian Stability Conjecture, Preprint. ETH-Zentrum, Switzerland. Zbl0835.34052
- [4] A. Gasull, J. Llibre and J. Sotomayor, Global asymptotic stability of differential equations in the plane, J. diff. Eq., 1989, To appear. Zbl0732.34045MR1111178
- [5] A. Gasull and J. Sotomayor, On the basin of attraction of dissipative planar vector fields, Lecture Notes in Mathematics. Springer-Verlag. Procc. Coll. Periodic Orbits and Bifurcations. Luminy, 1989, To appear. Zbl0713.34053MR1094380
- [6] G. Gorni and G. Zampieri, On the global conjecture for global asymptotic stability, 1990, To appear. Zbl0739.34047
- [7] C. Gutierrez, Dissipative vector fields on the plane with infinitely many attracting hyperbolic singularities, Bol. Soc. Bras. Mat., Vol. 22, No. 2, 1992, pp. 179-190. Zbl0776.34024MR1179484
- [8] P. Hartman, On stability in the large for systems of ordinary differential equations, Can. J. Math., Vol. 13, 1961, pp. 480-492. Zbl0103.05901MR123791
- [9] P. Hartman, Ordinary differential equations, Sec. Ed. Birkhäuser, 1982. Zbl0476.34002MR658490
- [10] R.E. Kalman, On Physical and Mathematical mechanisms of instability in nonlinear automatic control systems, Journal of Applied Mechanics Transactions, ASME, Vol. 79, (3), 1957, pp. 553-566. MR88420
- [11] N.N. Krasovskii, Some problems of the stability theory of motion, 1959, In russian. Gosudartv Izdat. Fiz. Math. Lit., Moscow., English translation, Stanford University Press, 1963.
- [12] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J., Vol. 12, 1960, pp. 305-317. Zbl0096.28802MR126019
- [13] G. Meisters and O. Olech, Global Stability, injectivity and the Jacobian Conjecture, To appear in the Procc. of the First World Congress on Nonlinear Analysis held at Tampa, Florida. August, 1992. Zbl0854.34054
- [14] G. Meisters and O. Olech, Solution of the global asymptotic stability Jacobian conjecture for the polynomial case, Analyse Mathématique et applications. Contributions en l'honneur de J. L. Lions., Gauthier-Villars, Paris, 1988, pp. 373-381. Zbl0668.34048MR956968
- [15] C. Olech, On the global stability of an autonomous system on the plane, Cont. toDiff. Eq., Vol. 1, 1963, pp. 389-400. Zbl0136.08602MR147734
- [16] B. Smith and F. Xavier, Injectivity of local diffeomorphisms from nearly spectral conditions, University of Notre Dame, Preprint, 1993.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.