A note on the Kazdan-Warner type condition

Zheng-Chao Han; Yan Yan Li

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 3, page 283-292
  • ISSN: 0294-1449

How to cite

top

Han, Zheng-Chao, and Li, Yan Yan. "A note on the Kazdan-Warner type condition." Annales de l'I.H.P. Analyse non linéaire 13.3 (1996): 283-292. <http://eudml.org/doc/78383>.

@article{Han1996,
author = {Han, Zheng-Chao, Li, Yan Yan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {prescribed scalar curvature; Kazdan-Warner condition},
language = {eng},
number = {3},
pages = {283-292},
publisher = {Gauthier-Villars},
title = {A note on the Kazdan-Warner type condition},
url = {http://eudml.org/doc/78383},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Han, Zheng-Chao
AU - Li, Yan Yan
TI - A note on the Kazdan-Warner type condition
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 3
SP - 283
EP - 292
LA - eng
KW - prescribed scalar curvature; Kazdan-Warner condition
UR - http://eudml.org/doc/78383
ER -

References

top
  1. [A] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer-Verlag, New York, 1982. Zbl0512.53044MR681859
  2. [BC] A. Bahri and J.M. Coron, The scalar-curvature problem on standard three-dimensional sphere, J. of Func. Anal., Vol. 95, 1991, pp. 106-172. Zbl0722.53032MR1087949
  3. [BiE] G. Bianchi and H. Egnell, An ODE approach to the equation Δu + Kun+2/n-2 = 0, in Rn, Math. Z., Vol. 210, 1992, pp. 137-166. Zbl0759.35019MR1161175
  4. [BE] J.P. Bourguignon and J.P. Ezin, Scalar curvature functions in a conformal class of metric and conformal transformations, Tran. Amer. Math. Soc., Vol. 301, 1987, pp. 723-736. Zbl0622.53023MR882712
  5. [CL] K.C. Chang and J.Q. Liu, On Nirenberg's problem, InternationalJ. of Math., Vol. 4, 1993, pp. 35-58. Zbl0786.58010MR1209959
  6. [CGY] S.Y. Chang, M.J. Gursky and P. Yang, The scalar curvature equation on 2- and 3-sphere, Calculus of Variations and Partial Differential Equations, Vol. 1, 1993, pp. 205-229. Zbl0822.35043MR1261723
  7. [CY1] S.Y. Chang and P. Yang, Conformal deformations of metrics on S2, J. Diff. Geom., Vol. 27, 1988, pp. 256-296. Zbl0649.53022MR925123
  8. [CD] W. Chen and W. Ding, Scalar curvature on Sn, Trans. Amer. Math. Soc., Vol. 303, 1987, pp. 365-382. Zbl0635.35026MR896027
  9. [ChL] W. Chen and C. Li, A necessary and sufficient condition for the Nirenberg problem, Comm. Pure Appl. Math., Vol. 48, 1995, pp. 657-667. Zbl0830.35034MR1338474
  10. [CS] K. Cheng and J. Smoller, Conformal metrics with prescribed Gaussian curvature on S2, Trans. Amer. Math. Soc., Vol. 336, 1993, pp. 219-255. Zbl0783.53010MR1087053
  11. [ES] J. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., Vol. 86, 1986, pp. 243-254. Zbl0628.53041MR856845
  12. [H] Z.C. Han, Prescribing Gaussian curvature on S2, Duke Math. J., Vol. 61, No. 3, 1990, pp. 679-703. Zbl0715.53034MR1084455
  13. [KW] J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math., Vol. 101, 1975, pp. 317-331. Zbl0297.53020MR375153
  14. [K] D. Koutroufiotis, Gaussian curvature and conformal mapping, J. Diff. Geom., Vol. 7, 1972, pp. 479-488. Zbl0268.53028MR328835
  15. [GT] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations, 2nd edition, Grundlehoen der mathematischen Wissenschaften 224, Springer-Verlag, 1983. Zbl0562.35001MR737190
  16. [HV] E. Hebey and M. Vaugon, Meilleures constantes dans le théorème d'inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe, Indiana Univ. Math. J., Vol. 41, 1992, pp. 377-407. Zbl0764.53029MR1183349
  17. [H] C. Hong, A best constant and the Gaussian curvature, Proc. of Amer. Math. Soc., Vol. 97, 1986, pp. 734-747. Zbl0603.58056MR845999
  18. [L1] Y.Y. Li, Prescribing scalar curvature on S3 , S4 and related problems, J. Functional Analysis, Vol. 118, 1993, pp. 43-118. Zbl0790.53040MR1245597
  19. [L2] Y.Y. Li, Prescribing scalar curvature on Sn and related problems, Part I, J. Differential Equations, Vol. 120, 1995, pp. 319-410. Zbl0827.53039MR1347349
  20. [L3] Y.Y. Li, Prescribing scalar curvature on Sn and related problems, Part II: Existence and compactness, Comm. Pure Appl. Math., Vol. 49, 1996. Zbl0849.53031MR1383201
  21. [M] J. Moser, On a nonlinear problem in differential geometry, Dynamical systems (M. Peixoto, ed.) Academic Press, New York, 1973. Zbl0275.53027MR339258
  22. [Sc1] R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Lecture notes in mathematics, No. 1365, edited by M. Giaquinta, Springer-Verlag, 1989, pp. 120-154. Zbl0702.49038MR994021
  23. [Sc2] R. Schoen, Private notes of special topics in geometry courses in Stanford University and New York University, 1988 and 1989. 
  24. [XY] X. Xu and P. Yang, Remarks on prescribing Gauss curvature, Trans. Amer. Math. Soc., Vol. 336, 1993, pp. 831-840. Zbl0823.53034MR1087058
  25. [Z] D. Zhang, New results on geometric variational problems, thesis, Stanford University, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.