On the uniqueness of solutions of the homogeneous curvature equations

Timothy R. Cranny

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 5, page 619-630
  • ISSN: 0294-1449

How to cite

top

Cranny, Timothy R.. "On the uniqueness of solutions of the homogeneous curvature equations." Annales de l'I.H.P. Analyse non linéaire 13.5 (1996): 619-630. <http://eudml.org/doc/78395>.

@article{Cranny1996,
author = {Cranny, Timothy R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {viscosity solutions; degenerate prescribed curvature equation},
language = {eng},
number = {5},
pages = {619-630},
publisher = {Gauthier-Villars},
title = {On the uniqueness of solutions of the homogeneous curvature equations},
url = {http://eudml.org/doc/78395},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Cranny, Timothy R.
TI - On the uniqueness of solutions of the homogeneous curvature equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 5
SP - 619
EP - 630
LA - eng
KW - viscosity solutions; degenerate prescribed curvature equation
UR - http://eudml.org/doc/78395
ER -

References

top
  1. [1] M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Vol. 277, 1983, pp. 1-42. Zbl0599.35024MR690039
  2. [2] N.N. Ivochkina, Solution of the Dirichlet problem for curvature equations of order m, Mat. Sb., Vol. 180, 1989, pp. 867-887; English trans. Math. USSR. Sb., Vol. 67, 1990, pp. 317-339. Zbl0695.35074MR1014618
  3. [3] R. Jensen, P.-L. Lions and P.E. Souganidis, A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc., Vol. 102, 1988, pp. 975-978. Zbl0662.35048MR934877
  4. [4] M. Lin and N.S. Trudinger, The Dirichlet problem for the prescribed curvature quotient equations, Top. Methods in Nonlinear Analysis, Vol. 3, 1994, pp. 1-17. Zbl0812.58016MR1281990
  5. [5] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 153-179. Zbl0721.35018MR1057653
  6. [6] N.S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. l'Inst. Henri Poincaré. Analyse non linéaire, Vol. 11 (4), 1994, pp. 411-425. Zbl0859.52001MR1287239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.