On critical exponents for the heat equation with a nonlinear boundary condition

Bei Hu; Hong-Ming Yin

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 6, page 707-732
  • ISSN: 0294-1449

How to cite

top

Hu, Bei, and Yin, Hong-Ming. "On critical exponents for the heat equation with a nonlinear boundary condition." Annales de l'I.H.P. Analyse non linéaire 13.6 (1996): 707-732. <http://eudml.org/doc/78398>.

@article{Hu1996,
author = {Hu, Bei, Yin, Hong-Ming},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {heat equation; nonlinear boundary condition; critical exponents},
language = {eng},
number = {6},
pages = {707-732},
publisher = {Gauthier-Villars},
title = {On critical exponents for the heat equation with a nonlinear boundary condition},
url = {http://eudml.org/doc/78398},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Hu, Bei
AU - Yin, Hong-Ming
TI - On critical exponents for the heat equation with a nonlinear boundary condition
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 6
SP - 707
EP - 732
LA - eng
KW - heat equation; nonlinear boundary condition; critical exponents
UR - http://eudml.org/doc/78398
ER -

References

top
  1. [1] C. Bandle and H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., Vol. 316, 1989, pp. 595-624. Zbl0693.35081MR937878
  2. [2] K. Deng, M. Fila and H.A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenianae, Vol. 63, 1994, pp. 169-192. Zbl0824.35048MR1319438
  3. [3] M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Comment. Math. Univ. Carolinate, Vol. 30, 1989, pp. 479-484. Zbl0702.35141MR1031865
  4. [4] M. Fila and J. Filo, Blow-up on the boundary: a survey, Proceedings of the Banach Center, to appear. Zbl0858.35065MR1449147
  5. [5] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo Sect. A. Math., Vol. 16, 1966, pp. 105-113. 
  6. [6] V.A. Galaktionov and H.A. Levine, On critical Fujita exponents for heat equations with a nonlinear flux boundary condition on the boundary, Israel J. Math., to appear. Zbl0851.35067
  7. [7] M.G. Garroni and J.L. Menaldi, Green functions for second order parabolic integrodifferential problems, Longman Scientific and Technical, New York, 1992. Zbl0806.45007MR1202037
  8. [8] J.L. Gomez, V. Marquez and N. Wolanski, Blow up and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Diff. Eq., Vol. 2, 1992, pp. 384-401. Zbl0735.35016MR1120912
  9. [9] B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential and Integral Equations, Vol. 7, 1994, pp. 301-313. Zbl0820.35062MR1255890
  10. [10] B. Hu and H.-M. Yin, The profile near blow up time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., Vol. 346, 1994, pp. 117-135. Zbl0823.35020MR1270664
  11. [11] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic type, AMS Monograph translation, Vol. 23, Providence, RI, 1968. Zbl0174.15403MR241822
  12. [12] H.A. Levine, The role of critical exponents in blow up theorems, SIAM Review, Vol. 32, 1990, pp. 262-288. Zbl0706.35008MR1056055
  13. [13] H.A. Levine and P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal., Vol. 109, 1990, pp. 73-80. Zbl0702.35131MR1019170
  14. [14] G. Lieberman, Study of global solutions of parabolic equations via a priori estimates, Part I: Equations with principal elliptic part equal to the Laplacian, Math. Meth. in the Appl. Sci., Vol. 16, 1993, pp. 457-474. Zbl0797.35093MR1230123
  15. [15] V.G. Maz'ja, Sobolev Spaces, Springer-Verlag, New York, 1985. 
  16. [16] S. Ohta and A. Kaneko, Critical exponent of blow up for semilinear heat equation on a product domain, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., Vol. 40, 1993, pp. 635-650. Zbl0799.35126MR1269031
  17. [17] C.V. Pao, Nonlinear Parabolic Equation and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001
  18. [18] W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal., Vol. 6, 1975, pp. 85-90. Zbl0268.35052MR364868
  19. [19] F.B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., Vol. 38, 1981, pp. 29-40. Zbl0476.35043MR599472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.