On critical exponents for the heat equation with a nonlinear boundary condition

Bei Hu; Hong-Ming Yin

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 6, page 707-732
  • ISSN: 0294-1449

How to cite

top

Hu, Bei, and Yin, Hong-Ming. "On critical exponents for the heat equation with a nonlinear boundary condition." Annales de l'I.H.P. Analyse non linéaire 13.6 (1996): 707-732. <http://eudml.org/doc/78398>.

@article{Hu1996,
author = {Hu, Bei, Yin, Hong-Ming},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {heat equation; nonlinear boundary condition; critical exponents},
language = {eng},
number = {6},
pages = {707-732},
publisher = {Gauthier-Villars},
title = {On critical exponents for the heat equation with a nonlinear boundary condition},
url = {http://eudml.org/doc/78398},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Hu, Bei
AU - Yin, Hong-Ming
TI - On critical exponents for the heat equation with a nonlinear boundary condition
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 6
SP - 707
EP - 732
LA - eng
KW - heat equation; nonlinear boundary condition; critical exponents
UR - http://eudml.org/doc/78398
ER -

References

top
  1. [1] C. Bandle and H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., Vol. 316, 1989, pp. 595-624. Zbl0693.35081MR937878
  2. [2] K. Deng, M. Fila and H.A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenianae, Vol. 63, 1994, pp. 169-192. Zbl0824.35048MR1319438
  3. [3] M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Comment. Math. Univ. Carolinate, Vol. 30, 1989, pp. 479-484. Zbl0702.35141MR1031865
  4. [4] M. Fila and J. Filo, Blow-up on the boundary: a survey, Proceedings of the Banach Center, to appear. Zbl0858.35065MR1449147
  5. [5] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo Sect. A. Math., Vol. 16, 1966, pp. 105-113. 
  6. [6] V.A. Galaktionov and H.A. Levine, On critical Fujita exponents for heat equations with a nonlinear flux boundary condition on the boundary, Israel J. Math., to appear. Zbl0851.35067
  7. [7] M.G. Garroni and J.L. Menaldi, Green functions for second order parabolic integrodifferential problems, Longman Scientific and Technical, New York, 1992. Zbl0806.45007MR1202037
  8. [8] J.L. Gomez, V. Marquez and N. Wolanski, Blow up and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Diff. Eq., Vol. 2, 1992, pp. 384-401. Zbl0735.35016MR1120912
  9. [9] B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential and Integral Equations, Vol. 7, 1994, pp. 301-313. Zbl0820.35062MR1255890
  10. [10] B. Hu and H.-M. Yin, The profile near blow up time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., Vol. 346, 1994, pp. 117-135. Zbl0823.35020MR1270664
  11. [11] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic type, AMS Monograph translation, Vol. 23, Providence, RI, 1968. Zbl0174.15403MR241822
  12. [12] H.A. Levine, The role of critical exponents in blow up theorems, SIAM Review, Vol. 32, 1990, pp. 262-288. Zbl0706.35008MR1056055
  13. [13] H.A. Levine and P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal., Vol. 109, 1990, pp. 73-80. Zbl0702.35131MR1019170
  14. [14] G. Lieberman, Study of global solutions of parabolic equations via a priori estimates, Part I: Equations with principal elliptic part equal to the Laplacian, Math. Meth. in the Appl. Sci., Vol. 16, 1993, pp. 457-474. Zbl0797.35093MR1230123
  15. [15] V.G. Maz'ja, Sobolev Spaces, Springer-Verlag, New York, 1985. 
  16. [16] S. Ohta and A. Kaneko, Critical exponent of blow up for semilinear heat equation on a product domain, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., Vol. 40, 1993, pp. 635-650. Zbl0799.35126MR1269031
  17. [17] C.V. Pao, Nonlinear Parabolic Equation and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001
  18. [18] W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal., Vol. 6, 1975, pp. 85-90. Zbl0268.35052MR364868
  19. [19] F.B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., Vol. 38, 1981, pp. 29-40. Zbl0476.35043MR599472

NotesEmbed ?

top

You must be logged in to post comments.