On equivariant p-harmonic maps

Ali Fardoun

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 1, page 25-72
  • ISSN: 0294-1449

How to cite

top

Fardoun, Ali. "On equivariant p-harmonic maps." Annales de l'I.H.P. Analyse non linéaire 15.1 (1998): 25-72. <http://eudml.org/doc/78431>.

@article{Fardoun1998,
author = {Fardoun, Ali},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Dirichlet problem; equivariant -harmonic maps; Euclidean ball; spheres; ellipsoids},
language = {eng},
number = {1},
pages = {25-72},
publisher = {Gauthier-Villars},
title = {On equivariant p-harmonic maps},
url = {http://eudml.org/doc/78431},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Fardoun, Ali
TI - On equivariant p-harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 1
SP - 25
EP - 72
LA - eng
KW - Dirichlet problem; equivariant -harmonic maps; Euclidean ball; spheres; ellipsoids
UR - http://eudml.org/doc/78431
ER -

References

top
  1. [1] A. Baldes, Stability and uniqueness properties of the equator map from a ball into an ellipsoid, Math. Z., Vol. 185, 1984, pp. 505-516. Zbl0513.58021MR733770
  2. [2] W.Y. Ding, Symmetric harmonic maps between spheres, Comm. Math. Phys., 1988, pp. 641-649. Zbl0672.58009MR962492
  3. [3] F. Duzaar, Regularity of p-harmonic maps into a closed hemisphere, Bolletino U.M.I., Vol. 7, 5-B, 1991, pp. 157-170. Zbl0737.49028MR1110673
  4. [4] F. Duzaar and M. Fuchs, On removable singularities of p-harmonic maps, Ann. Inst. Poincaré Anal. Non Linéaire, Vol. 7, 1990, pp. 385-405. Zbl0715.49040MR1138529
  5. [5] J. Eells and L. Lemaire, Anoter report on harmonic maps, Bull. London Math. Soc., Vol. 20, 1988, pp. 385-524. Zbl0669.58009MR956352
  6. [6] J. Eells and A. Ratto, Harmonic maps and minimal immersions with symmetries, Annals of Math. Studies, Vol. 130, Princeton Univ. Press, 1993. Zbl0783.58003MR1242555
  7. [7] A. Fardoun, Sur le problème de Dirichlet pour les applications p-harmoniques de la boule dans l'ellipsoide, C. R. Acad. Sci., Paris, t. 321, Série I, 1995, pp. 1189-1194. Zbl0835.31007MR1360781
  8. [8] R. Hardt and F.H. Lin, Mapping minimizing the Lp norm of the gradient, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 555-588. Zbl0646.49007MR896767
  9. [9] P. Hartman, Ordinary differential equations, J. Wiley, New York, 1964. Zbl0125.32102MR171038
  10. [10] J. Karcher and J.C. Wood, Non existence results and growth properties for harmonic maps and forms, J. Reine. Angew. Math., Vol. 353, 1984, pp. 165-180. Zbl0544.58008
  11. [11] W. Jä Ger and H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine. Angew. Math., Vol. 343, 1983, pp. 146-161. Zbl0516.35032MR705882
  12. [12] O.A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  13. [13] J.P. Lasalle, Stability theory for ordinary differential equations, J. Differential Equations, Vol. 4, 1968, pp. 57-65. Zbl0159.12002MR222402
  14. [14] L. Lemaire, Applications harmoniques de surfaces riemanniennes, J. Differential Geometry, Vol. 13, 1978, pp. 51-78. Zbl0388.58003MR520601
  15. [15] A. Ratto, On the Dirichlet problem for harmonic maps into spheres or ellipsoids and equivariant harmonic maps from warped products, Bull. Soc. Math. Belgique, Vol. 41, 1989, 2-SERB, pp. 145-168. Zbl0686.58011MR1022743
  16. [16] R.T. Smith, Harmonic mappings of spheres, Amer. J. Math., 1975, pp. 364-384. Zbl0321.57020MR391127
  17. [17] X.W. Xu and P. C. Yang, A construction of m-harmonic maps of spheres, International Journal of Math., Vol. 4, No. 3, 1993, pp. 521-533. Zbl0786.58011MR1228587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.