Regularity at the free boundary of two-dimensional stationary harmonic maps

Michael Grüter

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 2, page 151-167
  • ISSN: 0294-1449

How to cite

top

Grüter, Michael. "Regularity at the free boundary of two-dimensional stationary harmonic maps." Annales de l'I.H.P. Analyse non linéaire 15.2 (1998): 151-167. <http://eudml.org/doc/78434>.

@article{Grüter1998,
author = {Grüter, Michael},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity; free boundary; two-dimensional stationary harmonic maps; two-dimensional minimal surfaces},
language = {eng},
number = {2},
pages = {151-167},
publisher = {Gauthier-Villars},
title = {Regularity at the free boundary of two-dimensional stationary harmonic maps},
url = {http://eudml.org/doc/78434},
volume = {15},
year = {1998},
}

TY - JOUR
AU - Grüter, Michael
TI - Regularity at the free boundary of two-dimensional stationary harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 2
SP - 151
EP - 167
LA - eng
KW - regularity; free boundary; two-dimensional stationary harmonic maps; two-dimensional minimal surfaces
UR - http://eudml.org/doc/78434
ER -

References

top
  1. [1] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Minimal Surfaces I. Grundlehren math. Wiss., Vol. 295, Springer-VerlagBerlinHeidelberg1992. Zbl0777.53012MR1215267
  2. [2] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Minimal Surfaces II. Grundlehren math. Wiss., Vol. 296, Springer-VerlagBerlinHeidelberg1992. Zbl0777.53013MR1215268
  3. [3] G. Dziuk, Über die Stetigkeit teilweise freier Minimalflächen. Manuscr. Math., Vol. 36, 1981, pp. 241-251. Zbl0468.49023MR641976
  4. [4] G. Dziuk, C2-Regularity for partially free minimal surfaces, Math. Z., Vol. 189, 1985, pp. 71-79. Zbl0564.49024MR776538
  5. [5] M. Giaquinta and S. Hildebrandt, Calculus of Variations. Vol.1 , The Lagrangian formalism. Grundlehren math. Wiss., vol. 310 , Springer-VerlagBerlinHeidelberg1995. Zbl0853.49001MR1368401
  6. [6] M. Grüter, Regularity of weak H-surfaces. J. Reine Angew. Math. 329, 1981, pp. 1-15. Zbl0461.53029MR636440
  7. [7] M. Grüter, Conformally invariant variational integrals and the removability of isolated singularities, Manuscr., Math., Vol. 47, 1984, pp. 85-104. Zbl0543.49020MR744314
  8. [8] M. Grüter, Eine Bemerkung zur Regularität stationärer Punkte von konform invarianten Variationsintegralen, Manuscr. Math., Vol. 55, 1986, pp. 451-453. Zbl0594.49027MR836876
  9. [9] M. Grüter, The monotonicity formula in geometric measure theory, and an application to partially free boundary problems. Zbl0659.49020
  10. In: S. Hildebrandt, R. Leis (editors), Partial differential equations and calculus of variations. Lect. Notes Math., Vol. 1357, Springer-VerlagBerlinHeidelberg1988, pp. 238-255. Zbl0648.00008MR976228
  11. [10] M. Grüter, S. Hildebrandt and J.C.C. Nitsche, On the boundary behavior of minimal surfaces with a free boundary which are not minima of the area. Manuscr., Math., Vol. 35, 1981, pp. 387-410. Zbl0483.49037MR636464
  12. [11] M. Grüter, S. Hildebrandt and J.C.C. Nitsche, Regularity for surfaces of constant mean curvature with free boundaries. Acta Math., Vol. 156, 1986, pp. 119-152. Zbl0609.49027MR822332
  13. [12] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris, Vol. 312, Série I, 1991, pp. 591-596. Zbl0728.35015MR1101039
  14. [ 13] W. Jäger, Behavior of minimal surfaces with free boundary, Commun, Pure Appl. Math., Vol. 23, 1970. pp. 803-818. Zbl0204.11601MR266067
  15. [14] J. Jost, On the regularity of minimal surfaces with free boundaries in a Riemannian manifold, Manuscr. Math., Vol. 56, 1986, pp. 279-291. Zbl0601.49028MR856366
  16. [15] J. Jost, Continuity of minimal surfaces with piecewise smooth boundaries, Math. Ann., Vol. 276, 1987, pp. 599-614. Zbl0596.53006MR879539
  17. [16] H. Lewy, On minimal surfaces with partially free boundary, Commun. Pure Appl. Math., Vol. 4, 1951, pp. 1-13. 
  18. [17] F.H. Lin, Une remarque sur I'application x/|x|.C. R. Acad. Sci. Paris, Vol. 305, Série I. 1987. pp. 529-531. Zbl0652.58022
  19. [18] C.B. Morrey. Multiple integrals in the calculus of variations, Grundlehren math. Wiss., Vol. 130. Springer-VerlagBerlinHeidelberg1966. Zbl0142.38701MR202511
  20. [19] J.C.C. Nitsche, Vorlesungen über Minimalflächen. Grundlehren math. Wiss., Vol. 199, Springer-VerlagBerlinHeidelberg1975. Zbl0319.53003MR448224
  21. [20] J.C.C. Nitsche, Lectures on minimal surfaces, vol. 1: Introduction, fundamentals, geometry and basic boundary problems. Cambridge Univ. Press1989. Zbl0688.53001MR1015936
  22. [21] J. Qing, Boundary regularity of weakly harmonic maps from surfaces, Journ. Funct. Anal., Vol. 114, 1993, pp. 458-466. Zbl0785.53048MR1223710
  23. [22] R. Schoen, Analytic aspects of the harmonic map problem. Zbl0551.58011
  24. In: S.S. Chern (editor), Seminar on nonlinear partial differential equations. Math. Sci. Res. Inst. Publ., Vol. 2. Springer-VerlagNew York1984, pp. 321-358. Zbl0542.00009MR765224
  25. [23] K. Steffen, Two-dimensional minimal surfaces and harmonic maps. In: G. Anzellotti, M. Giaquinta (editors), Lecture notes on geometric measure theory and geometrical variational problems. Lecture notes series, Vol. 4, Dipartimento di Matematica, Università degli Studi di Trento1995, 40 pp. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.