-equivariant Ljusternik-Schnirelman theory for non-even functionals
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 3, page 341-370
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEkeland, I., and Ghoussoub, N.. "$\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals." Annales de l'I.H.P. Analyse non linéaire 15.3 (1998): 341-370. <http://eudml.org/doc/78440>.
@article{Ekeland1998,
author = {Ekeland, I., Ghoussoub, N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical point theory; -equivariance; non-symmetric functional},
language = {eng},
number = {3},
pages = {341-370},
publisher = {Gauthier-Villars},
title = {$\mathbb \{Z\}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals},
url = {http://eudml.org/doc/78440},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Ekeland, I.
AU - Ghoussoub, N.
TI - $\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 3
SP - 341
EP - 370
LA - eng
KW - critical point theory; -equivariance; non-symmetric functional
UR - http://eudml.org/doc/78440
ER -
References
top- [A] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, M. R. C. Technical Report, Vol. 1442, 1974.
- [A-R] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
- [Ba] A. Bahri, Topological results on a certain class of functionals and application, J.F.A., Vol. 41, 1981, pp. 397-427. Zbl0499.35050MR619960
- [Ba-Be] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, T.A.M.S., Vol. 267, 1981, pp. 1-32. Zbl0476.35030MR621969
- [Ba-L] A. Bahri and P.-L. Lions, Morse index of some min-max critical points I. Application to multiplicity results. Commun. Pure and App. Math., Vol. 41, 1988, pp. 1027- 1037. Zbl0645.58013MR968487
- [G1] N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J. Reine. und. angew. Math., Vol. 417, 1991, pp. 27-76. Zbl0736.58011MR1103905
- [G2] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, Cambridge University Press, 1993. Zbl0790.58002MR1251958
- [L-Sc] L. Ljusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934. Zbl0011.02803JFM60.1228.04
- [R] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S., A.M.S., No. 65, 1986. Zbl0609.58002MR845785
- [S] M. Struwe, Variational methods and their applications to non-linear partial differential equations and Hamiltonian systems, Springer-Verlag, 1990. Zbl0746.49010MR1078018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.