2 -equivariant Ljusternik-Schnirelman theory for non-even functionals

I. Ekeland; N. Ghoussoub

Annales de l'I.H.P. Analyse non linéaire (1998)

  • Volume: 15, Issue: 3, page 341-370
  • ISSN: 0294-1449

How to cite


Ekeland, I., and Ghoussoub, N.. "$\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals." Annales de l'I.H.P. Analyse non linéaire 15.3 (1998): 341-370. <http://eudml.org/doc/78440>.

author = {Ekeland, I., Ghoussoub, N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical point theory; -equivariance; non-symmetric functional},
language = {eng},
number = {3},
pages = {341-370},
publisher = {Gauthier-Villars},
title = {$\mathbb \{Z\}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals},
url = {http://eudml.org/doc/78440},
volume = {15},
year = {1998},

AU - Ekeland, I.
AU - Ghoussoub, N.
TI - $\mathbb {Z}_2$-equivariant Ljusternik-Schnirelman theory for non-even functionals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 3
SP - 341
EP - 370
LA - eng
KW - critical point theory; -equivariance; non-symmetric functional
UR - http://eudml.org/doc/78440
ER -


  1. [A] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, M. R. C. Technical Report, Vol. 1442, 1974. 
  2. [A-R] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
  3. [Ba] A. Bahri, Topological results on a certain class of functionals and application, J.F.A., Vol. 41, 1981, pp. 397-427. Zbl0499.35050MR619960
  4. [Ba-Be] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, T.A.M.S., Vol. 267, 1981, pp. 1-32. Zbl0476.35030MR621969
  5. [Ba-L] A. Bahri and P.-L. Lions, Morse index of some min-max critical points I. Application to multiplicity results. Commun. Pure and App. Math., Vol. 41, 1988, pp. 1027- 1037. Zbl0645.58013MR968487
  6. [G1] N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J. Reine. und. angew. Math., Vol. 417, 1991, pp. 27-76. Zbl0736.58011MR1103905
  7. [G2] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, Cambridge University Press, 1993. Zbl0790.58002MR1251958
  8. [L-Sc] L. Ljusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels, Hermann, Paris, 1934. Zbl0011.02803JFM60.1228.04
  9. [R] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S., A.M.S., No. 65, 1986. Zbl0609.58002MR845785
  10. [S] M. Struwe, Variational methods and their applications to non-linear partial differential equations and Hamiltonian systems, Springer-Verlag, 1990. Zbl0746.49010MR1078018

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.