On the non-locality of quasiconvexity

Jan Kristensen

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 1, page 1-13
  • ISSN: 0294-1449

How to cite

top

Kristensen, Jan. "On the non-locality of quasiconvexity." Annales de l'I.H.P. Analyse non linéaire 16.1 (1999): 1-13. <http://eudml.org/doc/78459>.

@article{Kristensen1999,
author = {Kristensen, Jan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi convexity; rank-one convexity},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Gauthier-Villars},
title = {On the non-locality of quasiconvexity},
url = {http://eudml.org/doc/78459},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Kristensen, Jan
TI - On the non-locality of quasiconvexity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 1
SP - 1
EP - 13
LA - eng
KW - quasi convexity; rank-one convexity
UR - http://eudml.org/doc/78459
ER -

References

top
  1. [1] J.J. Alibert and B. Dacorogna, An example of a quasiconvex function not polyconvex in dimension two. Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 155-166. Zbl0761.26009MR1145109
  2. [2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal., Vol. 63, 1978, pp. 337-403. Zbl0368.73040MR475169
  3. [3] J.M. Ball, Sets of gradients with no rank-one connections. J. Math. pures et appl., Vol. 69, 1990, pp. 241-259. Zbl0644.49011MR1070479
  4. [4] J.M. Ball and F. Murat, Remarks on rank-one convexity and quasiconvexity. In Proceedings of the 1990 Dundee Conference on Differential Equations. Zbl0751.49005MR1158879
  5. [5] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, weak continuity, and variational problems of any order. J. Funct. Anal., Vol. 41, 1981, pp. 135-174. Zbl0459.35020MR615159
  6. [6] B. Dacorogna, "Direct Methods in the Calculus of Variations". 1989 (Berlin: Springer). Zbl0703.49001MR990890
  7. [7] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal., Vol. 115, 1991, pp. 329-365. Zbl0754.49020MR1120852
  8. [8] J. Kristensen. On quasiconvexification of locally bounded functions. Preprint, 1996. 
  9. [9] J. Kristensen. (In preparation). 
  10. [10] J. Matousek and P. Plechac, On functional separately convex hulls. Discrete and Computational Geometry (to appear). Zbl0892.68102MR1486640
  11. [11] N.G. Meyers, Quasiconvexity and the semicontinuity of multiple variational integrals of any order. Trans. Amer. Math. Soc., Vol. 119, 1965, pp. 125-149. Zbl0166.38501MR188838
  12. [12] C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math.2, 1952, pp. 25-53. Zbl0046.10803MR54865
  13. [13] C.B. Morrey, "Multiple integrals in the Calculus of Variations", 1966 (Berlin: Springer). Zbl0142.38701
  14. [14] F. Murat, A survey on Compensated Compactness. In "Contributions to modern calculus of variations. (ed.) L.Cesari. Pitman Research Notes in Mathematics Series 148, Longman, Harlow, 1987, pp. 145-183. MR894077
  15. [15] G.P. Parry, On the planar rank-one convexity condition. Proc. Roy. Soc. Edinburgh, Vol. 125A, 1995, pp. 247-264. Zbl0841.49008MR1331560
  16. [16] P. Pedregal, Laminates and microstructure. Europ. J. Appl. Math., Vol. 4 (1993), 121-149. Zbl0779.73050MR1228114
  17. [17] P. Pedregal, Some remarks on quasiconvexity and rank-one convexity. preprint, 1995. MR1415822
  18. [18] D. Serre, Formes quadratiques et calcul des variations. J. Math. pures et appl., Vol. 62, 1983, pp. 177-196. Zbl0529.49005MR713395
  19. [19] V. Šverák, Examples of rank-one convex functions, Proc. Roy. Soc. Edinburgh, Vol. 114A, 1990, pp. 237-242. Zbl0714.49024MR1055547
  20. [20] V. Šverák, Quasiconvex functions with subquadratic growth. Proc. Roy. Soc. London, Vol. 433A1991, pp. 723-725. Zbl0741.49016MR1116970
  21. [21] V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh120A, 1992, pp. 185-189. Zbl0777.49015MR1149994
  22. [22] L. Tartar, The compensated compactness method applied to systems of conservation laws. In "Systems of Nonlinear Partial Differential Equations "; J. M. BALL (ed.), 1983 (D.Reidel Publ. Company), pp. 263-285. Zbl0536.35003MR725524
  23. [23] L. Tartar, On separately convex functions. In "Microstructure and Phase Transition" (eds.) D. KINDERLEHRER, R. JAMES, M. LUSKIN and J. L. ERICKSEN. The IMA volumes in mathematics and its applications, Vol. 54, 1993 (New York: Springer). Zbl0823.26008MR1320538
  24. [24] F.J. Tepstra, Die darstellung der biquadratischen formen als summen von quadraten mit anwendung auf die variationsrechnung. Math. Ann., Vol. 116, 1938, pp. 166-180. Zbl0019.35203
  25. [25] K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Sc. Norm. Sup. Pisa Serie IV, Vol. XIX, 1992, pp. 313-326. Zbl0778.49015MR1205403
  26. [26] K.-W. Zhang, On various semiconvex hulls in the calculus of variations. preprint, 1996. 
  27. [27] K.-W. Zhang, On the structure of quasiconvex hulls. preprint, 1996. 

Citations in EuDML Documents

top
  1. Sebastian Heinz, Quasiconvex functions can be approximated by quasiconvex polynomials
  2. Marcus Wagner, On the lower semicontinuous quasiconvex envelope for unbounded integrands (I)
  3. Xavier Blanc, Claude Le Bris, Pierre-Louis Lions, Atomistic to Continuum limits for computational materials science
  4. Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
  5. Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
  6. Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.