Global weak solutions for 1 + 2 dimensional wave maps into homogeneous spaces

Yi Zhou

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 4, page 411-422
  • ISSN: 0294-1449

How to cite


Zhou, Yi. "Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces." Annales de l'I.H.P. Analyse non linéaire 16.4 (1999): 411-422. <>.

author = {Zhou, Yi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cauchy problem; wave maps},
language = {eng},
number = {4},
pages = {411-422},
publisher = {Gauthier-Villars},
title = {Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces},
url = {},
volume = {16},
year = {1999},

AU - Zhou, Yi
TI - Global weak solutions for $1+2$ dimensional wave maps into homogeneous spaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 4
SP - 411
EP - 422
LA - eng
KW - Cauchy problem; wave maps
UR -
ER -


  1. [1] D. Christodoulou and A.S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 1041-1091. Zbl0744.58071MR1223662
  2. [2] A. Freire, Global weak solutions of the wave map system to compact homogeneous spaces, Preprint. Zbl0867.58019MR1421290
  3. [3] A. Freire, S. Müller, M. Struwe, Weak convergence of wave maps from (1+2)- dimensional Minkowski space to Riemannian manifold, Invent. Math. (to appear). Zbl0906.35061MR1483995
  4. [4] C.-H. Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math., Vol. 33, 1980, pp. 727-737. Zbl0475.58005MR596432
  5. [5] F. Hélein , Regularity of weakly harmonic map from a surface into a manifold with symmetries, Manuscripta Math., Vol. 70, 1991, pp. 203-218. Zbl0718.58019MR1085633
  6. [6] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 1221-1268. Zbl0803.35095MR1231427
  7. [7] S. Müller and M. Struwe, Global existence of wave maps in 1+2 dimensions with finite energy data, preprint. Zbl0896.35086MR1481698
  8. [8] F. Murat, Compacité par compensation, Ann. Scula. Norm. Pisa, Vol. 5, 1978, pp. 489-507. Zbl0399.46022MR506997
  9. [9] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J.Diff.Geom., Vol. 18, 1983, pp. 253-268. Zbl0547.58020MR710054
  10. [10] J. Shatah, Weak solutions and development of singularity in the SU(2) σ-model, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 459-469. Zbl0686.35081MR933231
  11. [11] L. Tartar, Compensated compactness and applications to p.d.e. Nonlinear Analysis and Mechanics, Heriot-Watt symposium, R. J. KNOPS, Vol. 4, 1979, pp. 136-212. Zbl0437.35004MR584398
  12. [12] Y. Zhou, Local existence with minimal regularity for nonlinear wave equations, Amer. J. Math. (to appear). Zbl0881.35077MR1448218
  13. [13] Y. Zhou, Remarks on local regularity for two space dimensional wave maps, J.Partial Differential Equations (to appear). Zbl0891.35103MR1443568
  14. [14] Y. Zhou, Uniqueness of weak solution of 1+1 dimensional wave maps, Math. Z. (to appear). Zbl0940.35141
  15. [15] Y. Zhou, An Lp theorem for the compensated compactness, Proceedings of royal society of Edinburgh, Vol. 122 A, 1992, pp. 177-189. Zbl0815.46031MR1190238

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.