Global strong solution of the Navier-Stokes equations in 4 and 5 dimensional unbounded domains

Hideo Kozono; Hermann Sohr

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 5, page 535-561
  • ISSN: 0294-1449

How to cite

top

Kozono, Hideo, and Sohr, Hermann. "Global strong solution of the Navier-Stokes equations in 4 and 5 dimensional unbounded domains." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 535-561. <http://eudml.org/doc/78474>.

@article{Kozono1999,
author = {Kozono, Hideo, Sohr, Hermann},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence interval; a priori estimates; asymptotic behavior},
language = {eng},
number = {5},
pages = {535-561},
publisher = {Gauthier-Villars},
title = {Global strong solution of the Navier-Stokes equations in 4 and 5 dimensional unbounded domains},
url = {http://eudml.org/doc/78474},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Kozono, Hideo
AU - Sohr, Hermann
TI - Global strong solution of the Navier-Stokes equations in 4 and 5 dimensional unbounded domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 535
EP - 561
LA - eng
KW - existence interval; a priori estimates; asymptotic behavior
UR - http://eudml.org/doc/78474
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces. Berlin-Heidelberg-New YorkSpringer-Verlag1976. Zbl0344.46071MR482275
  2. [2] W. Borchers and T. Miyakawa, Algebraic L2 decay for Navier-Stokes flows in exterior domains. Acta Math., Vol. 165, 1990, pp. 189-227. Zbl0722.35014MR1075041
  3. [3] W. Borchers and T. Miyakawa, L2 decay for Navier-Stokes Flows in unbounded domains, with application to exterior stationary flows. Arch. Rational Mech. Anal., Vol. 118, 1992, pp. 273-295. Zbl0756.76018MR1158939
  4. [4] W. Borchers and T. Miyakawa, On some coercive estimate for the exterior Stokes problem. Lecture Note in Math. Vol. 1530, Springer-Verlag, 1993, pp. 71-84. Zbl0779.35085MR1226508
  5. [5] H. Fujita and T. Kato, On the Navier-Stokes initial value problem 1. Arch. Rational Mech. Anal., Vol. 46, 1964, pp. 269-315. Zbl0126.42301MR166499
  6. [6] H. Fujita and H. Morimoto, On fractional power of the Stokes operators. Proc. Japan Acad., Vol. 46, 1970, pp. 1141-1143. Zbl0235.35067MR296755
  7. [7] D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad., Vol. 43, 1967, pp. 82-86. Zbl0154.16201MR216336
  8. [8] G.P. Galdi and P. Maremonti, Monotonic decreasing and asymptotic behaviour of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains. Arch. Rational Mech. Anal., Vol. 94, 1986, pp. 253-266. Zbl0617.35108MR846064
  9. [9] Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces. Arch. Rational Mech. Anal., Vol. 89, 1985, pp. 251-265. Zbl0584.76037MR786549
  10. [10] Y. Giga and T. Miyakawa, Solution in Lr of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal., Vol. 89, 1985, pp. 267-281. Zbl0587.35078MR786550
  11. [11] Y. Giga and H. Sohr, On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec IA, Vol. 36, 1989, pp. 103-130. MR991022
  12. [12] J.G. Heywood, The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J., Vol. 29, 1980, pp. 639-681. Zbl0494.35077MR589434
  13. [13] A. Inoue, and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo, Sec IA, Vol. 24, 1977, pp. 103-130. Zbl0381.35066MR481649
  14. [14] H. Iwashita, Lq - Lr estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in Lq spaces. Math. Ann., Vol. 285, 1989, pp. 265-288. Zbl0659.35081MR1016094
  15. [15] S. Janson and P.W. Jones, Interpolation between Hp spaces: the complex method. J. Funct. Anal., Vol. 48, 1982, pp. 58-81. Zbl0507.46047MR671315
  16. [16] T. Kato, Lp-solution of the Navier-Stokes equation in Rm, with applications to weak solutions. Math. Z., Vol. 187, 1984, pp. 471-480. Zbl0545.35073
  17. [17] H. Kozono and T. Ogawa, Some Lp estimate for the exterior Stokes flow and an application to the nonstationary Navier-Stokes equations. Indiana Univ. Math. J., Vol. 41, 1992, pp. 789-808. Zbl0759.35035MR1189911
  18. [18] H. Kozono and T. Ogawa, Two-dimensional Navier-Stokes flow in unbounded domains. Math. Ann., Vol. 297, 1993, pp. 1-31. Zbl0796.35129MR1238405
  19. [19] H. Kozono and T. Ogawa, Global strong solution and its decay properties for the Navier-Stokes equations in three dimensional domains with non-compact boundaries. Math. Z., Vol. 216, 1994, pp. 1-30. Zbl0798.35127MR1273463
  20. [20] J. Leray, Sur le mouvement d'un liquids visqeux emplissant l'espace. Acta. Math., Vol. 63, 1994, pp. 193-248. JFM60.0726.05
  21. [21] P. Maremonti, Some results on the asymptotic behaviour of Hopf weak solutions to the Navier-Stokes equations in unbounded domains. Math. Z., Vol. 210, 1992, pp. 1-22. Zbl0738.35064MR1161167
  22. [22] K. Masuda, On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Japan, Vol. 27, 1975, pp. 294-327. Zbl0303.76011MR440224
  23. [23] K. Masuda, Weak solutions of the Navier-Stokes equations. Tohoku Math. J., Vol. 36, 1984, pp. 623-646. Zbl0568.35077MR767409
  24. [24] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math. J., Vol. 12, 1982, pp. 115-140. Zbl0486.35067MR647234
  25. [25] T. Miyakawa and H. Sohr, On energy inequality, smoothness and large time behavior in L2 for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z., Vol. 199, 1988, pp. 455-478. Zbl0642.35067MR968313
  26. [26] J. Serrin, The initial value problem for the Navier-Stokes equations. R. E. Langer ed., University of Wisconsin Press, Madison, 1963, pp. 69-98. Zbl0115.08502MR150444
  27. [27] H. Sohr and W. VonWAHL, On the singular set and the uniqueness of weak solutions of the Navier-Stokes equations. Manuscripta Math., Vol. 49, 1984, pp. 27-59. Zbl0567.35069MR762786
  28. [28] H. Tanabe, Equations of evolutions. London: Pitman1979. 
  29. [29] S. Ukai, A solution formula for the Stokes equation in Rn+. Comm. Pure Appl. Math., Vol. 40, 1987, pp. 611-621. Zbl0638.76040MR896770
  30. [30] W. von WAHL, The equations of Navier-Stokes and abstract parabolic equations. Braunschweig Wiesbaden: Vieweg1985. MR832442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.