Attractors and time averages for random maps
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 3, page 307-369
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAraújo, Vítor. "Attractors and time averages for random maps." Annales de l'I.H.P. Analyse non linéaire 17.3 (2000): 307-369. <http://eudml.org/doc/78495>.
@article{Araújo2000,
author = {Araújo, Vítor},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {random systems; time averages; ergodicity},
language = {eng},
number = {3},
pages = {307-369},
publisher = {Gauthier-Villars},
title = {Attractors and time averages for random maps},
url = {http://eudml.org/doc/78495},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Araújo, Vítor
TI - Attractors and time averages for random maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 3
SP - 307
EP - 369
LA - eng
KW - random systems; time averages; ergodicity
UR - http://eudml.org/doc/78495
ER -
References
top- [1] Alves J.F., Bonatti C., Viana M., SRB measures for partially hyperbolic diffeomorphisms, the expanding case, in preparation.
- [2] Benedicks M., Moeckel R., An attractor for certain Hénon maps, Preprint E.T.H., Zurich.
- [3] Brin M., Pesin Ya., Partially hyperbolic dynamical systems, Izv. Akad. Nauk. SSSR1 (1974) 170-212. Zbl0309.58017MR343316
- [4] Bonatti C., Díaz L.J., Connexions heterocliniques et genericité d'une infinité de puits ou de sources, Preprint PUC-Rio, 1998.
- [5] Bonatti C., Díaz L.J., Pujals E., Genericity of Newhouse's phenomenon vs. dominated splitting, in preparation.
- [6] Bonatti C., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Preprint IMPA, 1997. Zbl0996.37033MR1749677
- [7] Colli E., Infinitely many coexisting strange attractors, Annales de l'Institut Henri Poincaré — Analyse Non-Linéaire (accepted for publication). Zbl0932.37015
- [8] Díaz L.J., Pujals E., Ures R., Normal hyperbolicity and robust transitivity, Preprint PUC-Rio, 1997.
- [9] Fomaess J., Sibony N., Random iterations of rational functions, Ergodic Theory Dynamical Systems11 (4) (1991) 687-708. Zbl0753.30019MR1145616
- [10] Gambaudo J.-M., Tresser C., Diffeomorphisms with infinitely many strange attractors, J. Complexity6 (1990) 409-416. Zbl0717.58041MR1085387
- [11] Gonchenko S.V., Shil'nikov L.P., Turaev D.V., Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos6 ( 1 ) (1996) 15-31. Zbl1055.37578MR1376892
- [12] Grayson M., Pugh C., Shub M., Stably ergodic diffeomorphisms, Annals of Math.140 (1994) 295-329. Zbl0824.58032MR1298715
- [13] Munroe M.E., Introduction to Measure and Probability, Addison-Wesley, Cambridge, MA, 1953. Zbl0050.05603MR53186
- [14] Mañé R., Contributions to the stability conjecture, Topology17 (4) (1978) 383-396. Zbl0405.58035MR516217
- [15] Mañé R., Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. Zbl0616.28007MR889254
- [16] Newhouse S., Non-density of axion A(a) on S2, Proc. AMS Symp. Pure Math.14 (1970) 191-202. Zbl0206.25801
- [17] Newhouse S., Diffeomorphisms with infinitely many sinks, Topology13 (1974) 9- 18. Zbl0275.58016MR339291
- [18] Newhouse S., The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES50 (1979) 101-151. Zbl0445.58022MR556584
- [19] Petersen K., Ergodic Theory, Cambridge Studies in Advanced Math., No. 2, Cambridge, 1983. Zbl0507.28010MR833286
- [20] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque (1998). Zbl1044.37014MR1755446
- [21] Palis J., de Melo W., Geometric Theory of Dynamical Systems, Springer, New York, 1982. Zbl0491.58001MR669541
- [22] Palis J., Takens F., Hyperbolic and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Math., No. 35, Cambridge, 1993. Zbl0790.58014MR1237641
- [23] Palis J., Viana M., High dimension diffeomorphisms displaying infinitely many periodic attractors, Annals of Math.140 (1994) 207-250. Zbl0817.58004MR1289496
- [24] Pesin Ya., Sinai Ya., Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynamical Systems2 (1982) 417-438. Zbl0519.58035MR721733
- [25] Romero N., Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynamical Systems15 (1995) 735-757. Zbl0833.58020MR1346398
- [26] Shub M., Global Stability of Dynamical Systems, Springer, New York, 1987. Zbl0606.58003MR869255
- [27] Takens F., Partially hyperbolic fixed points, Topology10 (1971) 137-151. Zbl0214.22901MR307279
- [28] Takens F., Heteroclinic attractors: time averages and moduli of topological conjugacy, Bol. Soc. Bras. Mat.25 (1) (1994) 107-120. Zbl0801.58030MR1274765
- [29] Tedeschini-Lalli L., Yorke J.A., How often do simple dynamical processes have infinitely many coexisting sinks, Comm. Math. Phys.106 (1986) 635-657. Zbl0602.58036MR860314
- [30] Viana M., Global attractors and bifurcations, in: Broer H.W., van Gils S.A., Hoveijn I., Takens F. (Eds.), Nonlinear Dynamical Systems and Chaos Progress in Nonlinear Partial Differential Equations and Applications (PNLDE No. 19), Birkhäuser, 1996, pp. 299-324. Zbl0849.58045MR1391502
- [31] Viana M., Dynamics: A probabilistic and geometric perspective, in: Proceedings ICM, Documenta Mathematica, 1998. Zbl0911.58013MR1648047
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.