A Glimm type functional for a special Jin–Xin relaxation model
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 1, page 19-42
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBianchini, Stefano. "A Glimm type functional for a special Jin–Xin relaxation model." Annales de l'I.H.P. Analyse non linéaire 18.1 (2001): 19-42. <http://eudml.org/doc/78510>.
@article{Bianchini2001,
author = {Bianchini, Stefano},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {initial data with small total variation; unique entropic solution},
language = {eng},
number = {1},
pages = {19-42},
publisher = {Elsevier},
title = {A Glimm type functional for a special Jin–Xin relaxation model},
url = {http://eudml.org/doc/78510},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Bianchini, Stefano
TI - A Glimm type functional for a special Jin–Xin relaxation model
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 1
SP - 19
EP - 42
LA - eng
KW - initial data with small total variation; unique entropic solution
UR - http://eudml.org/doc/78510
ER -
References
top- 1 Bianchini S., Bressan A., BV solutions for a class of viscous hyperbolic systems, Indiana Univ. Math. J. (to appear). Zbl0988.35109MR1838306
- 2 Berenstein C.A, Gay R, Complex Variables. An Introduction, Springer, New York, 1991. Zbl0741.30001MR1107514
- 3 Bressan A., Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press (to appear). Zbl0997.35002
- 4 Bressan A, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal.Vol. 130 (1995) 205-230. Zbl0835.35088MR1337114
- 5 Bressan A, Liu T.P, Yang T, L1 stability estimates for n×n conservation laws, Arch. Rational Mech. Anal.Vol. 149 (1) (1999) 1-22. Zbl0938.35093MR1723032
- 6 Bressan A, Shen W, BV estimates for multicomponent chromatography with relaxation, Discrete Cont. Dynamical SystemsVol. 6 (1) (2000) 21-38. Zbl1018.35052MR1739591
- 7 Chen G.Q, Liu T.P, Zero relaxation and dissipation limits for systems of conservation laws, Comm. Pure Appl. Math.Vol. 43 (1993) 755-781. Zbl0797.35113MR1213992
- 8 Jin S, Xin Z.P, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math.Vol. 48 (1995) 235-277. Zbl0826.65078MR1322811
- 9 Liu T.P, Hyperbolic conservation laws with relaxation, Commun. Math. Phys.Vol. 108 (1987) 153-175. Zbl0633.35049MR872145
- 10 Natalini R, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math.Vol. 49 (1998) 795-823. Zbl0872.35064MR1391756
- 11 Natalini R, Recent results on hyperbolic relaxation problems, in: Freistühler H (Ed.), Analysis of Systems of Conservation Laws, Chapman & Hall/CRC, 1998, pp. 128-198. Zbl0940.35127MR1679940
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.