A Glimm type functional for a special Jin–Xin relaxation model

Stefano Bianchini

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 1, page 19-42
  • ISSN: 0294-1449

How to cite

top

Bianchini, Stefano. "A Glimm type functional for a special Jin–Xin relaxation model." Annales de l'I.H.P. Analyse non linéaire 18.1 (2001): 19-42. <http://eudml.org/doc/78510>.

@article{Bianchini2001,
author = {Bianchini, Stefano},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {initial data with small total variation; unique entropic solution},
language = {eng},
number = {1},
pages = {19-42},
publisher = {Elsevier},
title = {A Glimm type functional for a special Jin–Xin relaxation model},
url = {http://eudml.org/doc/78510},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Bianchini, Stefano
TI - A Glimm type functional for a special Jin–Xin relaxation model
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 1
SP - 19
EP - 42
LA - eng
KW - initial data with small total variation; unique entropic solution
UR - http://eudml.org/doc/78510
ER -

References

top
  1. 1 Bianchini S., Bressan A., BV solutions for a class of viscous hyperbolic systems, Indiana Univ. Math. J. (to appear). Zbl0988.35109MR1838306
  2. 2 Berenstein C.A, Gay R, Complex Variables. An Introduction, Springer, New York, 1991. Zbl0741.30001MR1107514
  3. 3 Bressan A., Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press (to appear). Zbl0997.35002
  4. 4 Bressan A, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal.Vol. 130 (1995) 205-230. Zbl0835.35088MR1337114
  5. 5 Bressan A, Liu T.P, Yang T, L1 stability estimates for n×n conservation laws, Arch. Rational Mech. Anal.Vol. 149 (1) (1999) 1-22. Zbl0938.35093MR1723032
  6. 6 Bressan A, Shen W, BV estimates for multicomponent chromatography with relaxation, Discrete Cont. Dynamical SystemsVol. 6 (1) (2000) 21-38. Zbl1018.35052MR1739591
  7. 7 Chen G.Q, Liu T.P, Zero relaxation and dissipation limits for systems of conservation laws, Comm. Pure Appl. Math.Vol. 43 (1993) 755-781. Zbl0797.35113MR1213992
  8. 8 Jin S, Xin Z.P, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math.Vol. 48 (1995) 235-277. Zbl0826.65078MR1322811
  9. 9 Liu T.P, Hyperbolic conservation laws with relaxation, Commun. Math. Phys.Vol. 108 (1987) 153-175. Zbl0633.35049MR872145
  10. 10 Natalini R, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math.Vol. 49 (1998) 795-823. Zbl0872.35064MR1391756
  11. 11 Natalini R, Recent results on hyperbolic relaxation problems, in: Freistühler H (Ed.), Analysis of Systems of Conservation Laws, Chapman & Hall/CRC, 1998, pp. 128-198. Zbl0940.35127MR1679940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.