Long-time vanishing properties of solutions of some semilinear parabolic equations
Yves Belaud; Bernard Helffer; Laurent Véron
Annales de l'I.H.P. Analyse non linéaire (2001)
- Volume: 18, Issue: 1, page 43-68
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBelaud, Yves, Helffer, Bernard, and Véron, Laurent. "Long-time vanishing properties of solutions of some semilinear parabolic equations." Annales de l'I.H.P. Analyse non linéaire 18.1 (2001): 43-68. <http://eudml.org/doc/78512>.
@article{Belaud2001,
author = {Belaud, Yves, Helffer, Bernard, Véron, Laurent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasilinear parabolic equations; Schrödinger operators; vanishing of solutions; semi-classical analysis; quenching},
language = {eng},
number = {1},
pages = {43-68},
publisher = {Elsevier},
title = {Long-time vanishing properties of solutions of some semilinear parabolic equations},
url = {http://eudml.org/doc/78512},
volume = {18},
year = {2001},
}
TY - JOUR
AU - Belaud, Yves
AU - Helffer, Bernard
AU - Véron, Laurent
TI - Long-time vanishing properties of solutions of some semilinear parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 1
SP - 43
EP - 68
LA - eng
KW - quasilinear parabolic equations; Schrödinger operators; vanishing of solutions; semi-classical analysis; quenching
UR - http://eudml.org/doc/78512
ER -
References
top- 1 Belaud Y., Ph.D. Thesis, Université François Rabelais-Tours (in preparation).
- 2 Cwikel M, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math.Vol. 106 (1977) 93-100. Zbl0362.47006MR473576
- 3 Evans L.C, Differentiability of a nonlinear semigroup in L1, J. Math. Anal. Appl.Vol. 60 (1977) 703-715. Zbl0363.47032MR454360
- 4 Evans L.C, Gariepy R.F, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
- 5 Friedman A, Phillips D, The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc.Vol. 282 (1984) 153-182. Zbl0552.35079MR728708
- 6 Gidas B, Ni W.M, Nirenberg L, Symmetry and related properties via the maximum principle, Comm. Math. Phys.Vol. 68 (1979) 209-243. Zbl0425.35020MR544879
- 7 Gilbarg D, Trudinger N, Elliptic Partial Differential Equations of Second Order, Springer, 1977. Zbl0361.35003MR473443
- 8 Helffer B, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Math., Vol. 1336, Springer, 1989. Zbl0647.35002MR960278
- 9 Helffer B, Sjöstrand J, Multiple wells in the semi-classical limit I, Comm. in P.D.E.Vol. 9 (1984) 337-408. Zbl0546.35053MR740094
- 10 Kondratiev V, Véron L, Asymptotic behavior of the solutions of some parabolic or elliptic equations, Asymptotic AnalysisVol. 14 (1997) 117-156. Zbl0897.35013MR1451209
- 11 Laptev A, Netrusov Yu, On the negative eigenvalues of a class of Schrödinger operators, Preprint, KTH, Stockholm, 1998. Zbl0941.35055MR1730512
- 12 Lieb E.H, Thirring W, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev inequalities, in: Studies in Math. Phys., Essays in Honour of V. Bargmann, Princeton Univ. Press, 1976. Zbl0342.35044
- 13 Lojaciewicz S, Ensembles Semi-Analytiques, Institut des Hautes Etudes Sci. Bures-sur-Yvette, France, 1964.
- 14 Lojaciewicz S, Sur les ensembles semi-analytiques, in: Actes Congrès Intern. Math. 1970, Tome 2, 1971, pp. 237-241. Zbl0241.32005MR425152
- 15 Mazya V.G, Sobolev Spaces, Springer, 1985. Zbl0692.46023MR817985
- 16 Moser J, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math.Vol. 13 (1960) 457-468. Zbl0111.09301MR170091
- 17 Nash J, Continuity of solutions of parabolic equations, Amer. J. Math.Vol. 80 (1958) 931-954. Zbl0096.06902MR100158
- 18 Rozenblyum G.V, Distribution of the discrete spectrum of singular differential operators, Doklady Akad. Nauk USSRVol. 202 (1972) 1012-1015. Zbl0249.35069MR295148
- 19 Whitney H, Local properties of analytic varieties, in: Cairns S.S (Ed.), Differential and Combinatorial Topology, 1965, pp. 205-244. Zbl0129.39402MR188486
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.