Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 4, page 477-504
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGazzola, Filippo, and Serrin, James. "Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters." Annales de l'I.H.P. Analyse non linéaire 19.4 (2002): 477-504. <http://eudml.org/doc/78552>.
@article{Gazzola2002,
author = {Gazzola, Filippo, Serrin, James},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {ground states; asymptotic behaviour; quasilinear elliptic equation},
language = {eng},
number = {4},
pages = {477-504},
publisher = {Elsevier},
title = {Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters},
url = {http://eudml.org/doc/78552},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Gazzola, Filippo
AU - Serrin, James
TI - Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 4
SP - 477
EP - 504
LA - eng
KW - ground states; asymptotic behaviour; quasilinear elliptic equation
UR - http://eudml.org/doc/78552
ER -
References
top- [1] Atkinson F.V., Peletier L.A., Ground states of −Δu=f(u) and the Emden–Fowler equation, Arch. Rational Mech. Anal.93 (1986) 103-127. Zbl0606.35029
- [2] Atkinson F.V., Peletier L.A., Emden–Fowler equations involving critical exponents, Nonlinear Anal. TMA10 (1986) 755-776. Zbl0662.34024MR851145
- [3] Atkinson F.V., Peletier L.A., Elliptic equations with nearly critical growth, J. Differential Equations70 (1987) 349-365. Zbl0657.35058MR915493
- [4] Berestycki H., Lions P.L., Nonlinear scalar field equations, I, Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [5] Brezis H., Peletier L.A., Asymptotics for elliptic equations involving critical exponents, in: Partial Differential Equations and Calculus of Variations, Birkhäuser, 1989, pp. 149-192. Zbl0685.35013MR1034005
- [6] Citti G., Positive solutions of quasilinear degenerate elliptic equations in Rn, Rend. Circolo Mat. Palermo35 (1986) 364-375. Zbl0659.35039MR929619
- [7] Franchi B., Lanconelli E., Serrin J., Existence and uniqueness of nonnegative solutions of quasilinear equations in Rn, Advances in Math.118 (1996) 177-243. Zbl0853.35035MR1378680
- [8] García Azorero J.P., Peral Alonso I., On limits of solutions of elliptic problems with nearly critical exponent, Comm. Partial Differential Equations17 (1992) 2113-2126. Zbl0799.35066MR1194752
- [9] Gazzola F., Critical growth quasilinear elliptic problems with shifting subcritical perturbation, Diff. Int. Eq.14 (2001) 513-528. Zbl1030.35076MR1824741
- [10] Gazzola F., Serrin J., Tang M., Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Diff. Eq.5 (2000) 1-30. Zbl0987.35064MR1734535
- [11] Knaap M.C., Peletier L.A., Quasilinear elliptic equations with nearly critical growth, Comm. Partial Differential Equations14 (1989) 1351-1383. Zbl0696.35052MR1022990
- [12] Ni W.M., Serrin J., Nonexistence theorems for quasilinear partial differential equations, Rend. Circolo Mat. Palermo (Centenary Supplement), Series II8 (1985) 171-185. Zbl0625.35028MR881397
- [13] Ni W.M., Serrin J., Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. dei Lincei, Atti dei Convegni77 (1986) 231-257.
- [14] Pucci P., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J.47 (1998) 501-528. Zbl0920.35054MR1647924
- [15] Rey O., Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math.65 (1989) 19-37. Zbl0708.35032MR1006624
- [16] Rey O., The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
- [17] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.49 (2000) 897-923. Zbl0979.35049MR1803216
- [18] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.