Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters

Filippo Gazzola; James Serrin

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 4, page 477-504
  • ISSN: 0294-1449

How to cite

top

Gazzola, Filippo, and Serrin, James. "Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters." Annales de l'I.H.P. Analyse non linéaire 19.4 (2002): 477-504. <http://eudml.org/doc/78552>.

@article{Gazzola2002,
author = {Gazzola, Filippo, Serrin, James},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {ground states; asymptotic behaviour; quasilinear elliptic equation},
language = {eng},
number = {4},
pages = {477-504},
publisher = {Elsevier},
title = {Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters},
url = {http://eudml.org/doc/78552},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Gazzola, Filippo
AU - Serrin, James
TI - Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 4
SP - 477
EP - 504
LA - eng
KW - ground states; asymptotic behaviour; quasilinear elliptic equation
UR - http://eudml.org/doc/78552
ER -

References

top
  1. [1] Atkinson F.V., Peletier L.A., Ground states of −Δu=f(u) and the Emden–Fowler equation, Arch. Rational Mech. Anal.93 (1986) 103-127. Zbl0606.35029
  2. [2] Atkinson F.V., Peletier L.A., Emden–Fowler equations involving critical exponents, Nonlinear Anal. TMA10 (1986) 755-776. Zbl0662.34024MR851145
  3. [3] Atkinson F.V., Peletier L.A., Elliptic equations with nearly critical growth, J. Differential Equations70 (1987) 349-365. Zbl0657.35058MR915493
  4. [4] Berestycki H., Lions P.L., Nonlinear scalar field equations, I, Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  5. [5] Brezis H., Peletier L.A., Asymptotics for elliptic equations involving critical exponents, in: Partial Differential Equations and Calculus of Variations, Birkhäuser, 1989, pp. 149-192. Zbl0685.35013MR1034005
  6. [6] Citti G., Positive solutions of quasilinear degenerate elliptic equations in Rn, Rend. Circolo Mat. Palermo35 (1986) 364-375. Zbl0659.35039MR929619
  7. [7] Franchi B., Lanconelli E., Serrin J., Existence and uniqueness of nonnegative solutions of quasilinear equations in Rn, Advances in Math.118 (1996) 177-243. Zbl0853.35035MR1378680
  8. [8] García Azorero J.P., Peral Alonso I., On limits of solutions of elliptic problems with nearly critical exponent, Comm. Partial Differential Equations17 (1992) 2113-2126. Zbl0799.35066MR1194752
  9. [9] Gazzola F., Critical growth quasilinear elliptic problems with shifting subcritical perturbation, Diff. Int. Eq.14 (2001) 513-528. Zbl1030.35076MR1824741
  10. [10] Gazzola F., Serrin J., Tang M., Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Diff. Eq.5 (2000) 1-30. Zbl0987.35064MR1734535
  11. [11] Knaap M.C., Peletier L.A., Quasilinear elliptic equations with nearly critical growth, Comm. Partial Differential Equations14 (1989) 1351-1383. Zbl0696.35052MR1022990
  12. [12] Ni W.M., Serrin J., Nonexistence theorems for quasilinear partial differential equations, Rend. Circolo Mat. Palermo (Centenary Supplement), Series II8 (1985) 171-185. Zbl0625.35028MR881397
  13. [13] Ni W.M., Serrin J., Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. dei Lincei, Atti dei Convegni77 (1986) 231-257. 
  14. [14] Pucci P., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J.47 (1998) 501-528. Zbl0920.35054MR1647924
  15. [15] Rey O., Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math.65 (1989) 19-37. Zbl0708.35032MR1006624
  16. [16] Rey O., The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  17. [17] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.49 (2000) 897-923. Zbl0979.35049MR1803216
  18. [18] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.