Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states

Philippe Souplet; Qi S. Zhang

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 5, page 683-703
  • ISSN: 0294-1449

How to cite

top

Souplet, Philippe, and Zhang, Qi S.. "Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 683-703. <http://eudml.org/doc/78558>.

@article{Souplet2002,
author = {Souplet, Philippe, Zhang, Qi S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {decaying potentials; elliptic equations; equilibria for parabolic equations},
language = {eng},
number = {5},
pages = {683-703},
publisher = {Elsevier},
title = {Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states},
url = {http://eudml.org/doc/78558},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Souplet, Philippe
AU - Zhang, Qi S.
TI - Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 683
EP - 703
LA - eng
KW - decaying potentials; elliptic equations; equilibria for parabolic equations
UR - http://eudml.org/doc/78558
ER -

References

top
  1. [1] Bahri A., Lions P.L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Anal. non linéaire14 (1997) 365-413. Zbl0883.35045MR1450954
  2. [2] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
  3. [3] Berestycki H., Lions P.L., Nonlinear scalar field equations I, existence of a ground state, Arch. Rat. Mech. Anal.82 (1983) 313-346. Zbl0533.35029MR695535
  4. [4] Berestycki H., Lions P.L., Nonlinear scalar field equations II, existence of infinitely many solutions, Arch. Rat. Mech. Anal.82 (1983) 347-376. Zbl0556.35046MR695536
  5. [5] Cazenave T., Lions P.L., Solutions globales d'équations de la chaleur semilinéaires, Comm. Partial Differential Equations9 (1984) 955-978. Zbl0555.35067MR755928
  6. [6] Cazenave T., Weissler F.B., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z.228 (1998) 83-120. Zbl0916.35109MR1617975
  7. [7] Deng K., Levine H.A., The role of critical exponents in blowup theorems, the sequel, J. Math. Anal. Appl.243 (2000) 85-126. Zbl0942.35025MR1742850
  8. [8] Ding W.Y., Ni W.M., On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal.91 (1986) 283-308. Zbl0616.35029MR807816
  9. [9] Feireisl E., Petzeltova H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations10 (1997) 181-196. Zbl0879.35023MR1424805
  10. [10] Fila M., Souplet Ph., Weissler F.B., Linear and nonlinear heat equations in Lqδ spaces and universal bounds for global solutions, Math. Annalen320 (2001) 87-113. Zbl0993.35023
  11. [11] Fujita H., On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002
  12. [12] Gidas B., Spruck J., Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
  13. [13] Giga Y., A bound for global solutions of semilinear heat equations, Comm. Math. Phys.103 (1986) 415-421. Zbl0595.35057MR832917
  14. [14] Haraux A., Weissler F.B., Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J.31 (1982) 167-189. Zbl0465.35049MR648169
  15. [15] Kato T., Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak solutions, Math. Z.187 (1984) 471-480. Zbl0545.35073MR760047
  16. [16] Kuzin I., Pohozaev S., Entire Solutions of Semilinear Elliptic Equations, Birkhäuser, 1997. Zbl0882.35003MR1479168
  17. [17] Levine H.A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+F(u), Arch. Rat. Mech. Anal.51 (1973) 371-386. Zbl0278.35052
  18. [18] Levine H.A., The role of critical exponents in blow up theorems, SIAM Rev.32 (1990) 262-288. Zbl0706.35008MR1056055
  19. [19] Lieberman G., Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. Zbl0884.35001MR1465184
  20. [20] Lions P.L., The concentration compactness principle in the calculus of variation. The locally compact case, part I, II, Ann. Inst. Henri Poincaré, Anal. non linéaire1 (1984) 109-145, 223–283. Zbl0704.49004
  21. [21] Moser J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964) 101-134. Zbl0149.06902MR159139
  22. [22] Murata M., Structure of positive solutions to (−Δ+V)u=0 in Rm, Duke Math. J.53 (1986) 869-943. Zbl0624.35023
  23. [23] Ni W.M., Sacks P., Tavantzis J., On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations54 (1984) 97-120. Zbl0565.35053MR756548
  24. [24] Noussair E., Swanson C.A., Existence theorems for generalized Klein Gordon equations, Bull. Amer. Math. Soc.31 (1983) 333-336. Zbl0524.35048MR684902
  25. [25] Quittner P., Universal bound for global positive solutions of a superlinear parabolic problem, Math. Annalen320 (2001) 299-305. Zbl0981.35010MR1839765
  26. [26] Souplet Ph., Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris323 (1996) 877-882. Zbl0860.35051MR1414551
  27. [27] Souplet Ph., Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations, Comm. Partial Differential Equations24 (1999) 951-973. Zbl0926.35064MR1680893
  28. [28] Souplet Ph., Zhang Q.S., Existence of ground states for semilinear elliptic equations with decaying mass: a parabolic approach, C. R. Acad. Sci. Paris332 (2001) 515-520. Zbl0992.35029MR1834061
  29. [29] Weissler F.B., Semilinear evolution equations in Banach spaces, J. Funct. Anal.32 (1979) 277-296. Zbl0419.47031MR538855
  30. [30] Weissler F.B., Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J.29 (1980) 79-102. Zbl0443.35034MR554819
  31. [31] Weissler F.B., Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math.38 (1981) 29-40. Zbl0476.35043MR599472
  32. [32] Zhang Q.S., Large time behavior of Schrödinger heat kernels and applications, Comm. Math. Phys.210 (2000) 371-398. Zbl0978.35014MR1776837
  33. [33] Zhang Q.S., Semilinear parabolic equations on manifolds and applications to the non-compact Yamabe problem, Electron. J. Differential Equations46 (2000) 1-30. Zbl0984.58011MR1764702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.