Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 5, page 683-703
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Bahri A., Lions P.L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Anal. non linéaire14 (1997) 365-413. Zbl0883.35045MR1450954
- [2] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
- [3] Berestycki H., Lions P.L., Nonlinear scalar field equations I, existence of a ground state, Arch. Rat. Mech. Anal.82 (1983) 313-346. Zbl0533.35029MR695535
- [4] Berestycki H., Lions P.L., Nonlinear scalar field equations II, existence of infinitely many solutions, Arch. Rat. Mech. Anal.82 (1983) 347-376. Zbl0556.35046MR695536
- [5] Cazenave T., Lions P.L., Solutions globales d'équations de la chaleur semilinéaires, Comm. Partial Differential Equations9 (1984) 955-978. Zbl0555.35067MR755928
- [6] Cazenave T., Weissler F.B., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z.228 (1998) 83-120. Zbl0916.35109MR1617975
- [7] Deng K., Levine H.A., The role of critical exponents in blowup theorems, the sequel, J. Math. Anal. Appl.243 (2000) 85-126. Zbl0942.35025MR1742850
- [8] Ding W.Y., Ni W.M., On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal.91 (1986) 283-308. Zbl0616.35029MR807816
- [9] Feireisl E., Petzeltova H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations10 (1997) 181-196. Zbl0879.35023MR1424805
- [10] Fila M., Souplet Ph., Weissler F.B., Linear and nonlinear heat equations in Lqδ spaces and universal bounds for global solutions, Math. Annalen320 (2001) 87-113. Zbl0993.35023
- [11] Fujita H., On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002
- [12] Gidas B., Spruck J., Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
- [13] Giga Y., A bound for global solutions of semilinear heat equations, Comm. Math. Phys.103 (1986) 415-421. Zbl0595.35057MR832917
- [14] Haraux A., Weissler F.B., Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J.31 (1982) 167-189. Zbl0465.35049MR648169
- [15] Kato T., Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak solutions, Math. Z.187 (1984) 471-480. Zbl0545.35073MR760047
- [16] Kuzin I., Pohozaev S., Entire Solutions of Semilinear Elliptic Equations, Birkhäuser, 1997. Zbl0882.35003MR1479168
- [17] Levine H.A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+F(u), Arch. Rat. Mech. Anal.51 (1973) 371-386. Zbl0278.35052
- [18] Levine H.A., The role of critical exponents in blow up theorems, SIAM Rev.32 (1990) 262-288. Zbl0706.35008MR1056055
- [19] Lieberman G., Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. Zbl0884.35001MR1465184
- [20] Lions P.L., The concentration compactness principle in the calculus of variation. The locally compact case, part I, II, Ann. Inst. Henri Poincaré, Anal. non linéaire1 (1984) 109-145, 223–283. Zbl0704.49004
- [21] Moser J., A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964) 101-134. Zbl0149.06902MR159139
- [22] Murata M., Structure of positive solutions to (−Δ+V)u=0 in Rm, Duke Math. J.53 (1986) 869-943. Zbl0624.35023
- [23] Ni W.M., Sacks P., Tavantzis J., On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations54 (1984) 97-120. Zbl0565.35053MR756548
- [24] Noussair E., Swanson C.A., Existence theorems for generalized Klein Gordon equations, Bull. Amer. Math. Soc.31 (1983) 333-336. Zbl0524.35048MR684902
- [25] Quittner P., Universal bound for global positive solutions of a superlinear parabolic problem, Math. Annalen320 (2001) 299-305. Zbl0981.35010MR1839765
- [26] Souplet Ph., Sur l'asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris323 (1996) 877-882. Zbl0860.35051MR1414551
- [27] Souplet Ph., Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations, Comm. Partial Differential Equations24 (1999) 951-973. Zbl0926.35064MR1680893
- [28] Souplet Ph., Zhang Q.S., Existence of ground states for semilinear elliptic equations with decaying mass: a parabolic approach, C. R. Acad. Sci. Paris332 (2001) 515-520. Zbl0992.35029MR1834061
- [29] Weissler F.B., Semilinear evolution equations in Banach spaces, J. Funct. Anal.32 (1979) 277-296. Zbl0419.47031MR538855
- [30] Weissler F.B., Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J.29 (1980) 79-102. Zbl0443.35034MR554819
- [31] Weissler F.B., Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math.38 (1981) 29-40. Zbl0476.35043MR599472
- [32] Zhang Q.S., Large time behavior of Schrödinger heat kernels and applications, Comm. Math. Phys.210 (2000) 371-398. Zbl0978.35014MR1776837
- [33] Zhang Q.S., Semilinear parabolic equations on manifolds and applications to the non-compact Yamabe problem, Electron. J. Differential Equations46 (2000) 1-30. Zbl0984.58011MR1764702