Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 5, page 705-714
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKawohl, Bernd, and Sweers, Guido. "Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 705-714. <http://eudml.org/doc/78559>.
@article{Kawohl2002,
author = {Kawohl, Bernd, Sweers, Guido},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Steiner symmetry; non-convex symmetrical domains; sliding method; maximum principle},
language = {eng},
number = {5},
pages = {705-714},
publisher = {Elsevier},
title = {Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems},
url = {http://eudml.org/doc/78559},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Kawohl, Bernd
AU - Sweers, Guido
TI - Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 705
EP - 714
LA - eng
KW - Steiner symmetry; non-convex symmetrical domains; sliding method; maximum principle
UR - http://eudml.org/doc/78559
ER -
References
top- [1] Altmann S.L., Herzig P., Point-Group Theory Tables, Clarendon Press, Oxford, 1994.
- [2] Berestycki H., Nirenberg L., Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys.5 (1988) 237-275. Zbl0698.35031MR1029429
- [3] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.)22 (1991) 1-37. Zbl0784.35025MR1159383
- [4] Coffman C.V., A nonlinear boundary value problem with many positive solutions, J. Differential Equations54 (1984) 429-437. Zbl0569.35033MR760381
- [5] Coxeter H.S.M., Regular Polytopes, Dover Publications, New York, 1973. Zbl0118.35902MR370327
- [6] Dancer E.N., The effect of the domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations74 (1988) 120-156. Zbl0662.34025MR949628
- [7] Dancer E.N., Sweers G., On the existence of a maximal weak solution for a semilinear elliptic equation, Differential Integral Equations2 (1989) 533-540. Zbl0732.35027MR996759
- [8] Fraenkel L.E., An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, 128, Cambridge University Press, Cambridge, 2000. Zbl0947.35002MR1751289
- [9] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [10] Kawohl B., A geometric property of level sets of solutions to semilinear elliptic Dirichlet problems, Applicable Anal.16 (1983) 229-233. Zbl0507.35035MR712734
- [11] Kawohl B., Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Continuous Dynam. Systems6 (2000) 683-690. Zbl1157.35342MR1757396
- [12] McNabb A., A. Strong comparison theorems for elliptic equations of second order, J. Math. Mech.10 (1961) 431-440. Zbl0106.29903MR142881
- [13] McWeeny R., Symmetry, an Introduction to Group Theory and Its Applications, Pergamon Press, Oxford, 1963. Zbl0111.36002MR224687
- [14] Sweers G., Semilinear elliptic problems on domains with corners, Comm. Partial Differential Equations14 (1989) 1229-1247. Zbl0702.35097MR1017071
- [15] Sweers G., Lecture notes on maximum principles, December 2000, http://aw.twi.tudelft.nl/~sweers/maxpr/maxprinc.pdf.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.