A nonexistence result for Yamabe type problems on thin annuli

Mohamed Ben Ayed; Khalil El Mehdi[1]; Mokhless Hammami

  • [1] Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 5, page 715-744
  • ISSN: 0294-1449

How to cite

top

Ben Ayed, Mohamed, El Mehdi, Khalil, and Hammami, Mokhless. "A nonexistence result for Yamabe type problems on thin annuli." Annales de l'I.H.P. Analyse non linéaire 19.5 (2002): 715-744. <http://eudml.org/doc/78560>.

@article{BenAyed2002,
affiliation = {Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA},
author = {Ben Ayed, Mohamed, El Mehdi, Khalil, Hammami, Mokhless},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {5},
pages = {715-744},
publisher = {Elsevier},
title = {A nonexistence result for Yamabe type problems on thin annuli},
url = {http://eudml.org/doc/78560},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Ben Ayed, Mohamed
AU - El Mehdi, Khalil
AU - Hammami, Mokhless
TI - A nonexistence result for Yamabe type problems on thin annuli
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 5
SP - 715
EP - 744
LA - eng
UR - http://eudml.org/doc/78560
ER -

References

top
  1. [1] Ahmedou M., El Mehdi K., Computation of the difference of topology at infinity for Yamabe-type problems on annuli-domains, I, Duke Math. J.94 (1998) 215-229. Zbl0966.35043MR1638658
  2. [2] Bahri A., Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., 182, Longman, Harlow, 1989. Zbl0676.58021MR1019828
  3. [3] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain, Comm. Pure Appl. Math.41 (1988) 255-294. Zbl0649.35033MR929280
  4. [4] Bahri A., Li Y.Y., Rey O., On a variational problem with lack of compactness: the topological effect of critical points at infinity, Calc. Var.3 (1995) 67-93. Zbl0814.35032MR1384837
  5. [5] Beauzamy B., Introduction to Banach Spaces and Their Topology, North-Holland, 1983. 
  6. [6] Brezis H., Points Critiques Dans les Problèmes Variationnels Sans Compacité, Séminaire Bourbaki, 40eme année, 698, 1987 1988. Zbl0860.58007MR992212
  7. [7] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
  8. [8] Dancer E.N., A note on an equation with critical exponent, Bull. London Math. Soc.20 (1988) 600-602. Zbl0646.35027MR980763
  9. [9] Ding W.Y., Positive solution of Δu+un+2/n−2=0 on contractible domain, J. Partial Differenial Equations2 (4) (1989) 83-88. Zbl0694.35067
  10. [10] Harrabi A., Rebhi S., Selmi A., Solutions of superlinear elliptic equations and their Morse indices, I, Duke Math. J.94 (1998) 141-157. Zbl0952.35042MR1635912
  11. [11] Harrabi A., Rebhi S., Selmi A., Solutions of superlinear elliptic equations and their Morse indices, II, Duke Math. J.94 (1998) 159-179. Zbl0952.35042MR1635912
  12. [12] Lin S.S., Asymptotic behavior of positive solutions to semilinear elliptic equations on expanding annuli, J. Differential Equations120 (2) (1995) 255-288. Zbl0839.35039MR1347346
  13. [13] Pohozaev S., Eingenfunctions of the equation Δu+λfu=0, Soviet Math. Dokl.6 (1965) 1408-1411. Zbl0141.30202
  14. [14] Rey O., The role of Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  15. [15] Struwe M., Variational Methods: Applications to Nonlinear PDE & Hamiltonian Systems, Springer-Verlag, Berlin, 1990. Zbl0746.49010MR1078018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.