Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ

Steven D. Taliaferro

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 6, page 889-901
  • ISSN: 0294-1449

How to cite

top

Taliaferro, Steven D.. "Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 889-901. <http://eudml.org/doc/78565>.

@article{Taliaferro2002,
author = {Taliaferro, Steven D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {behaviour near the origin of positive solutions; existence of positive solutions},
language = {eng},
number = {6},
pages = {889-901},
publisher = {Elsevier},
title = {Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ},
url = {http://eudml.org/doc/78565},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Taliaferro, Steven D.
TI - Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 889
EP - 901
LA - eng
KW - behaviour near the origin of positive solutions; existence of positive solutions
UR - http://eudml.org/doc/78565
ER -

References

top
  1. [1] Chen C.-C., Lin C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math.50 (1997) 971-1017. Zbl0958.35013MR1466584
  2. [2] Fowler R.H., Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser.2 (1931) 259-288. Zbl0003.23502
  3. [3] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
  4. [4] Li C., Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math.123 (1996) 221-231. Zbl0849.35009MR1374197
  5. [5] Schoen R., On the number of constant scalar curvature metrics in a conformal class, in: Lawson H.B., Tenenblat K. (Eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, New York, 1991, pp. 311-320. Zbl0733.53021MR1173050
  6. [6] J. Serrin, H. Zou, Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Preprint. Zbl1059.35040MR1946918
  7. [7] Taliaferro S.D., On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations158 (1999) 28-47. Zbl0939.31005MR1721720
  8. [8] Taliaferro S.D., On the growth of superharmonic functions near an isolated singularity II, Comm. Partial Differential Equations26 (2001) 1003-1026. Zbl0979.31003MR1843293
  9. [9] Taliaferro S.D., Isolated singularities of nonlinear elliptic inequalities, Indiana Univ. Math. J.50 (2001) 1885-1897. Zbl1101.35323MR1889086
  10. [10] Veron L., Singular solutions of some nonlinear elliptic equations, Nonlinear Anal.5 (1981) 225-242. Zbl0457.35031MR607806

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.