Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 6, page 889-901
- ISSN: 0294-1449
Access Full Article
topHow to cite
topTaliaferro, Steven D.. "Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 889-901. <http://eudml.org/doc/78565>.
@article{Taliaferro2002,
author = {Taliaferro, Steven D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {behaviour near the origin of positive solutions; existence of positive solutions},
language = {eng},
number = {6},
pages = {889-901},
publisher = {Elsevier},
title = {Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ},
url = {http://eudml.org/doc/78565},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Taliaferro, Steven D.
TI - Local behavior and global existence of positive solutions of auλ≤−Δu≤uλ
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 889
EP - 901
LA - eng
KW - behaviour near the origin of positive solutions; existence of positive solutions
UR - http://eudml.org/doc/78565
ER -
References
top- [1] Chen C.-C., Lin C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math.50 (1997) 971-1017. Zbl0958.35013MR1466584
- [2] Fowler R.H., Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser.2 (1931) 259-288. Zbl0003.23502
- [3] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
- [4] Li C., Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math.123 (1996) 221-231. Zbl0849.35009MR1374197
- [5] Schoen R., On the number of constant scalar curvature metrics in a conformal class, in: Lawson H.B., Tenenblat K. (Eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, New York, 1991, pp. 311-320. Zbl0733.53021MR1173050
- [6] J. Serrin, H. Zou, Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Preprint. Zbl1059.35040MR1946918
- [7] Taliaferro S.D., On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations158 (1999) 28-47. Zbl0939.31005MR1721720
- [8] Taliaferro S.D., On the growth of superharmonic functions near an isolated singularity II, Comm. Partial Differential Equations26 (2001) 1003-1026. Zbl0979.31003MR1843293
- [9] Taliaferro S.D., Isolated singularities of nonlinear elliptic inequalities, Indiana Univ. Math. J.50 (2001) 1885-1897. Zbl1101.35323MR1889086
- [10] Veron L., Singular solutions of some nonlinear elliptic equations, Nonlinear Anal.5 (1981) 225-242. Zbl0457.35031MR607806
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.