Almost continuous solutions of geometric Hamilton–Jacobi equations
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 2, page 237-269
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSiconolfi, Antonio. "Almost continuous solutions of geometric Hamilton–Jacobi equations." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 237-269. <http://eudml.org/doc/78578>.
@article{Siconolfi2003,
author = {Siconolfi, Antonio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equations; Discontinuous viscosity solutions; Representation formulae; uniqueness and stability results},
language = {eng},
number = {2},
pages = {237-269},
publisher = {Elsevier},
title = {Almost continuous solutions of geometric Hamilton–Jacobi equations},
url = {http://eudml.org/doc/78578},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Siconolfi, Antonio
TI - Almost continuous solutions of geometric Hamilton–Jacobi equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 237
EP - 269
LA - eng
KW - Hamilton-Jacobi equations; Discontinuous viscosity solutions; Representation formulae; uniqueness and stability results
UR - http://eudml.org/doc/78578
ER -
References
top- [1] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi Equations, Birkhäuser, Boston, 1997. Zbl0890.49011MR1484411
- [2] Bardi M., Crandall M.G., Evans L.C., Souganidis P.E., Viscosity Solutions and Applications, Springer-Verlag, Berlin, 1997.
- [3] Barles G., Perthame B., Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim.26 (1988) 1133-1148. Zbl0674.49027MR957658
- [4] Barles G., Discontinuous viscosity solutions of first order of Hamilton–Jacobi equations: a guided visit, Nonlinear Anal.20 (1993) 1123-1134. Zbl0816.35081MR1216503
- [5] Barles G., Solutions de Viscosité des Équations de Hamilton–Jacobi, Springer-Verlag, Paris, 1994. Zbl0819.35002MR1613876
- [6] Barron E.N., Jensen R., Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations15 (1990) 1713-1742. Zbl0732.35014MR1080619
- [7] Chen Y.G., Giga Y., Goto S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom.33 (1991) 749-786. Zbl0696.35087MR1100211
- [8] Clarke F.H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
- [9] Evans L.C., Ishii H., Differential games and nonlinear first order PDE in bounded domains, Manuscripta Math.49 (1984) 109-139. Zbl0559.35013MR767202
- [10] Evans L.C., Souganidis P., Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations, Indiana Univ. Math. J.33 (1984) 773-797. Zbl1169.91317MR756158
- [11] Frankowska H., Lower semicontinuous solutions of Hamilton–Jacob–Bellman equations, SIAM J. Control. Optim.31 (1993) 257-272. Zbl0796.49024MR1200233
- [12] Y. Giga, M.H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, Preprint, 1999. Zbl1005.49025MR1843285
- [13] Ishii H., Perron's method for Hamilton–Jacobi equations, Duke Math. J.55 (1987) 369-384. Zbl0697.35030MR894587
- [14] Kelley J.L., General Topology, Van Nostrand, Princeton, 1955. Zbl0066.16604MR70144
- [15] Oxtoby J.C., Measure and Category, Springer-Verlag, New York, 1971. Zbl0217.09201MR584443
- [16] Rockafellar R.T., Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math.32 (1980) 257-280. Zbl0447.49009MR571922
- [17] S. Samborski, Extension of nonlinear partial differential expressions and viscosity solutions. An useful space, Preprint, 2000.
- [18] A. Siconolfi, Metric character of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., to appear. Zbl1026.35027MR1953535
- [19] A. Siconolfi, Representation formulae and comparison results for geometric Hamilton–Jacobi equations, Preprint, 2001.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.