Almost continuous solutions of geometric Hamilton–Jacobi equations

Antonio Siconolfi

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 2, page 237-269
  • ISSN: 0294-1449

How to cite

top

Siconolfi, Antonio. "Almost continuous solutions of geometric Hamilton–Jacobi equations." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 237-269. <http://eudml.org/doc/78578>.

@article{Siconolfi2003,
author = {Siconolfi, Antonio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamilton-Jacobi equations; Discontinuous viscosity solutions; Representation formulae; uniqueness and stability results},
language = {eng},
number = {2},
pages = {237-269},
publisher = {Elsevier},
title = {Almost continuous solutions of geometric Hamilton–Jacobi equations},
url = {http://eudml.org/doc/78578},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Siconolfi, Antonio
TI - Almost continuous solutions of geometric Hamilton–Jacobi equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 237
EP - 269
LA - eng
KW - Hamilton-Jacobi equations; Discontinuous viscosity solutions; Representation formulae; uniqueness and stability results
UR - http://eudml.org/doc/78578
ER -

References

top
  1. [1] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi Equations, Birkhäuser, Boston, 1997. Zbl0890.49011MR1484411
  2. [2] Bardi M., Crandall M.G., Evans L.C., Souganidis P.E., Viscosity Solutions and Applications, Springer-Verlag, Berlin, 1997. 
  3. [3] Barles G., Perthame B., Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim.26 (1988) 1133-1148. Zbl0674.49027MR957658
  4. [4] Barles G., Discontinuous viscosity solutions of first order of Hamilton–Jacobi equations: a guided visit, Nonlinear Anal.20 (1993) 1123-1134. Zbl0816.35081MR1216503
  5. [5] Barles G., Solutions de Viscosité des Équations de Hamilton–Jacobi, Springer-Verlag, Paris, 1994. Zbl0819.35002MR1613876
  6. [6] Barron E.N., Jensen R., Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations15 (1990) 1713-1742. Zbl0732.35014MR1080619
  7. [7] Chen Y.G., Giga Y., Goto S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom.33 (1991) 749-786. Zbl0696.35087MR1100211
  8. [8] Clarke F.H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
  9. [9] Evans L.C., Ishii H., Differential games and nonlinear first order PDE in bounded domains, Manuscripta Math.49 (1984) 109-139. Zbl0559.35013MR767202
  10. [10] Evans L.C., Souganidis P., Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations, Indiana Univ. Math. J.33 (1984) 773-797. Zbl1169.91317MR756158
  11. [11] Frankowska H., Lower semicontinuous solutions of Hamilton–Jacob–Bellman equations, SIAM J. Control. Optim.31 (1993) 257-272. Zbl0796.49024MR1200233
  12. [12] Y. Giga, M.H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, Preprint, 1999. Zbl1005.49025MR1843285
  13. [13] Ishii H., Perron's method for Hamilton–Jacobi equations, Duke Math. J.55 (1987) 369-384. Zbl0697.35030MR894587
  14. [14] Kelley J.L., General Topology, Van Nostrand, Princeton, 1955. Zbl0066.16604MR70144
  15. [15] Oxtoby J.C., Measure and Category, Springer-Verlag, New York, 1971. Zbl0217.09201MR584443
  16. [16] Rockafellar R.T., Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math.32 (1980) 257-280. Zbl0447.49009MR571922
  17. [17] S. Samborski, Extension of nonlinear partial differential expressions and viscosity solutions. An useful space, Preprint, 2000. 
  18. [18] A. Siconolfi, Metric character of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., to appear. Zbl1026.35027MR1953535
  19. [19] A. Siconolfi, Representation formulae and comparison results for geometric Hamilton–Jacobi equations, Preprint, 2001. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.