Minimal rearrangements of Sobolev functions : a new proof
Adele Ferone; Roberta Volpicelli
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 2, page 333-339
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFerone, Adele, and Volpicelli, Roberta. "Minimal rearrangements of Sobolev functions : a new proof." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 333-339. <http://eudml.org/doc/78581>.
@article{Ferone2003,
author = {Ferone, Adele, Volpicelli, Roberta},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {polar factorization; rearrangements; Pólya-Szegő type inequalities},
language = {eng},
number = {2},
pages = {333-339},
publisher = {Elsevier},
title = {Minimal rearrangements of Sobolev functions : a new proof},
url = {http://eudml.org/doc/78581},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Ferone, Adele
AU - Volpicelli, Roberta
TI - Minimal rearrangements of Sobolev functions : a new proof
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 333
EP - 339
LA - eng
KW - polar factorization; rearrangements; Pólya-Szegő type inequalities
UR - http://eudml.org/doc/78581
ER -
References
top- [1] Alvino A., Lions P.L., Trombetti G., A remark on comparison result via Schwartz symmetrization, Proc. Roy. Soc. Edinburgh.102-A (1–2) (1986) 37-48. Zbl0597.35005MR837159
- [2] Alvino A., Ferone V., Lions P.L., Trombetti G., Convex symmetrization and applications, Ann. Inst. H. Poincaré, Anal. Non Linéaire14 (2) (1997) 275-293. Zbl0877.35040MR1441395
- [3] Aronsson G., Talenti G., Estimating the integral of a function in terms of a distribution function of its gradient, Boll. Un. Mat. Ital. (5)18-B (3) (1981) 885-894. Zbl0476.49030MR641744
- [4] Aubin T., Problèmes isopérimétriques et espaces de Sobolev, C. R. Acad. Sci. Paris280 (1975) 279-281. Zbl0295.53024MR407905
- [5] Betta M.F., Brock F., Mercaldo A., Posteraro M.R., A weighted isoperimetric inequality and applications to symmetrization, J. Inequal. Appl.4 (3) (1999) 215-240. Zbl1029.26018MR1734159
- [6] Brock F., Weighted Dirichlet-type inequalities for Steiner symmetrization, Calc. Var. Partial Differential Equations8 (1999) 15-25. Zbl0947.35056MR1666874
- [7] Brothers J.E., Ziemer W.P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math.384 (1988) 153-179. Zbl0633.46030MR929981
- [8] Cianchi A., Pick L., Sobolev embeddings into BMO, VMO and L∞, Ark. Mat.36 (2) (1998) 317-340. Zbl1035.46502
- [9] De Giorgi E., Su una teoria generale della misura (r−1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl.36 (4) (1954) 191-213. Zbl0055.28504
- [10] Duff G.F.D., A general integral inequality for the derivative of an equimeasurable rearrangement, Canad. J. Math.28 (4) (1976) 793-804. Zbl0342.26015MR409745
- [11] Federer H., Geometric Measure Theory, Springer, Berlin, 1969. Zbl0874.49001MR257325
- [12] Fleming W., Rishel R., An integral formula for total gradient variation, Arch. Math.11 (1960) 218-222. Zbl0094.26301MR114892
- [13] Friedman A., McLeod R., Strict inequalities for integrals of decreasingly rearranged functions, Proc. Roy. Soc. Edinburgh102-A (3–4) (1986) 277-289. Zbl0601.49012MR852361
- [14] Hilden K., Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math.18 (3) (1976) 215-235. Zbl0365.46031MR409773
- [15] Kawohl B., Rearrangements and Convexity of Level Sets in P.D.E., Lecture Notes in Math., 1150, Springer, Berlin, 1985. Zbl0593.35002MR810619
- [16] Klimov V.S., Imbedding theorems and geometric inequalities, Izv. Akad. Nauk USSR Ser. Mat.40 (3) (1976) 645-671. Zbl0332.46022MR420250
- [17] Maz'ja V.M., Sobolev Spaces, Springer, Berlin, 1985. Zbl0727.46017
- [18] Mossino J., Inégalités Isopérimétriques et Applications en Physic, Collection Travaux en Cours, Hermann Paris, 1984. Zbl0537.35002MR733257
- [19] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701MR202511
- [20] Pólya G., Szegö G., Isoperimetric Inequalities in Mathematical Physics, Ann. of Math. Studies, 27, Princeton University Press, Princeton, 1951. Zbl0044.38301MR43486
- [21] Rakotoson J.M., Temam R., A co-area formula with applications to monotone rearrangement and to regularity, Arch. Rational Mech. Anal.109 (3) (1990) 213-238. Zbl0735.49039MR1025171
- [22] Ryff J.V., Measure preserving transformations and rearrangements, J. Math. Anal. Appl.31 (3) (1970) 449-458. Zbl0214.13701MR419734
- [23] Sperner E., Zur Symmetrisierung von Funktionen auf Sphären, Math. Z.134 (1973) 317-327. Zbl0283.26015MR340558
- [24] Sperner E., Symmetrisierung für Funktionen mehrerer reeler Variablen, Manuscripta Math.11 (1974) 159-170. Zbl0268.26011MR328000
- [25] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. Cl. Sci. (4)110 (1976) 353-372. Zbl0353.46018MR463908
- [26] Talenti G., A weighted version of a rearrangement inequality, Ann. Univ. Ferrara43 (1997) 121-133. Zbl0936.26007MR1686750
- [27] A. Uribe, Minima of Dirichlet norm and Topeliz operators, Preprint, 1985.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.