Uniqueness of the polar factorisation and projection of a vector-valued mapping
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 3, page 405-418
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBurton, G. R., and Douglas, R. J.. "Uniqueness of the polar factorisation and projection of a vector-valued mapping." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 405-418. <http://eudml.org/doc/78585>.
@article{Burton2003,
author = {Burton, G. R., Douglas, R. J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {polar factorisation; monotone rearrangement; measure-preserving mappings; -projection},
language = {eng},
number = {3},
pages = {405-418},
publisher = {Elsevier},
title = {Uniqueness of the polar factorisation and projection of a vector-valued mapping},
url = {http://eudml.org/doc/78585},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Burton, G. R.
AU - Douglas, R. J.
TI - Uniqueness of the polar factorisation and projection of a vector-valued mapping
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 405
EP - 418
LA - eng
KW - polar factorisation; monotone rearrangement; measure-preserving mappings; -projection
UR - http://eudml.org/doc/78585
ER -
References
top- [1] J.-D. Benamou, Transformation conservant la mesure, mécanique des fluides incompressibles et modèle semi-géostrophique en météorologie, Thèse de 3ème cycle, Université de Paris IX-Dauphine, 1992.
- [2] Brenier Y., Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I305 (1987) 805-808. Zbl0652.26017MR923203
- [3] Brenier Y., Polar factorisation and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math.44 (1991) 375-417. Zbl0738.46011MR1100809
- [4] Y. Brenier, A geometric presentation of the semi-geostrophic equations, Isaac Newton Institute report, 1996.
- [5] Burton G.R., Douglas R.J., Rearrangements and polar factorisation of countably degenerate functions, Proc. Roy. Soc. Edinburgh128A (1998) 671-681. Zbl0910.28011MR1635400
- [6] Douglas R.J., Rearrangements of vector valued functions, with application to atmospheric and oceanic flows, SIAM J. Math. Anal.29 (1998) 891-902. Zbl0915.35025MR1617718
- [7] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
- [8] Larman D.G., On a conjecture of Klee and Martin for convex bodies, Proc. London Math. Soc. (3)23 (1971) 668-682. Zbl0245.52003MR293498
- [9] McCann R.J., Existence and uniqueness of monotone measure-preserving maps, Duke Math. J.80 (1995) 309-323. Zbl0873.28009MR1369395
- [10] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, NJ, 1970. Zbl0193.18401MR274683
- [11] Royden H.L., Real Analysis, Macmillan, New York, 1988. Zbl0121.05501MR151555
- [12] Ryff J.V., Measure preserving transformations and rearrangements, J. Math. Anal. Appl.31 (1970) 449-458. Zbl0214.13701MR419734
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.